Пи (число)

Из истории константы

Оглавление

Интересные факты о числе Пи — история изучения. Существование постоянной рассчитывает около 4 тысячелетий. Иными словами, она немного моложе самой математической науки.

Первое свидетельство того, что число Пи было известно ещё в Древнем Египте, заключается в папирусе Ахмеса, одном из старейших найденных задачников. Документ датируется приблизительно 1650 г. до н. э. В папирусе константа принималась равной 3,1605. Это достаточно точное значение, если учесть, что другие народы использовали 3 для вычисления длины окружности по её диаметру.

Немного более точно число Пи рассчитал Архимед, древнегреческий математик. Ему удалось приближённо представить значение в виде обыкновенных дробей 22/7 и 223/71. Известно предание, что он был настолько занят расчётами константы, что не обратил внимания на то, как римляне захватили его город. В тот момент, когда воин подошёл к учёному, Архимед крикнул ему, чтобы тот не трогал его чертежи. Эти слова математика стали последними.

Над расчётами постоянной работал основатель алгебры Аль-Хорезми, живший в VIII-IX вв. С небольшой погрешностью он получил число Пи, равное 3,1416.

Спустя 8 веков математиком Людольфом ван Цейленом были правильно определены 36 символов после запятой. За это достижение число Пи иногда называют людольфовой постоянной (другие известные наименования – архимедова константа или круговая постоянная), а полученные учёным цифры были выбиты на его могильной плите.

Примерно в это же время постоянную начали применять не только для окружности, но и для вычисления сложных кривых – арки и гипоциклоида.

Лишь в начале XVIII века константу начали называть числом Пи. Обозначение в виде буквы π выбрано неслучайно – именно с неё начинаются 2 греческих слова, означающих окружность и периметр. Название было предложено учёным Джонсом в 1706 году, и уже спустя 30 лет изображение этой греческой буквы прочно использоваться среди других математических обозначений.

В XIX веке Уильям Шенкс работал над вычислением первых 707 символов константы. Ему не удалось полностью добиться поставленной задачи – в расчёты закралась ошибка, и 527 цифра оказалось неверной. Однако даже полученный результат был неплохим достижением для науки того времени.

В конце XIX века неправильное значение числа, равное 3,2, чуть было не приняли на уровне государства в штате Индиана. К счастью, математики успели выступить против законопроекта и предотвратить ошибку.

В XX-XXI вв. с применением вычислительной техники точность и скорость расчёта константы повысилась в тысячи раз. К 2002 году в Японии при помощи компьютера было определено свыше 1 триллиона цифр постоянной. Спустя 9 лет точность вычисления составила уже 10 триллионов символов после запятой.

Константа и общество

Некоторые особенностей числа:

  1. Константа является иррациональной величиной. Это значит, что её невозможно представить в виде отношения двух чисел. Кроме того, в его записи отсутствует какая-либо закономерность.
  2. Повторяющиеся подряд знаки в константе – не редкость. Так, на каждые 20-30 символов обычно встречается хотя бы 2 идущих подряд цифры. Последовательности из 3 знаков уже более редкие, они попадаются с частотой около 1 повторения на 150-300 символов. А на 763 знаке начинается цепочка из 6 идущих подряд девяток. Это место в записи даже имеет собственное имя – точка Фейнмана.
  3. Если рассматривать первый миллион символов, то по статистике самыми редкими цифрами в нём окажутся 6 и 1, а самыми частыми – 5 и 4.
  4. Цифра 0 появляется в последовательности позже остальных, лишь на 31 знаке.
  5. В тригонометрии угол в 360 градусов и константа тесно связаны. Как ни странно, но на 358, 359 и 360 позиции после запятой расположено число 360.

С целью обмена информацией об открытиях был учреждён Пи-клуб. Желающим вступить в него приходится выдерживать нелёгкий экзамен: будущий член математического сообщества должен верно назвать на память как можно больше знаков постоянной.

Конечно, заучивание длинной числовой последовательности, не имеющей закономерностей и повторений — занятие достаточно трудное. Чтобы облегчить задачу, придумываются различные тексты и стихотворения, в которых количество букв в слове соответствует определённой цифре константы. Этот способ запоминания популярен у членов Пи-клуба. Один из самых длинных рассказов содержал 3834 первых знаков числа.

Памятник у Музея искусств в Сиэтле

Однако признанные рекордсмены по заучиванию – это, конечно же, жители Китая и Японии. Так, японец Акира Харагути смог выучить свыше 83 тысяч цифр после запятой. А китаец Лю Чао прославился как человек, который смог назвать 67890 символов числа Пи за рекордное время – 24 часа. При этом средняя скорость составила 47 знаков за 1 минуту. Изначально его цель была назвать 93 тысячи цифр, однако им была допущена ошибка, после которой он не стал продолжать.

Чтобы подчеркнуть значение константы, в Сиэтле перед Музеем искусств был воздвигнут памятник в виде огромной греческой буквы π.

Кроме того, с 1988 года каждое 14 марта отмечается день числа Пи. Дата совпадает с первыми знаками постоянной – 3,14. Празднуют его после 1:59. В этот день заинтересованные люди угощаются тортами и печеньем с символом Пи, после чего проводят различные математические конкурсы и викторины. Кстати, именно в этот день родились А.Эйнштейн, астроном Скиапарелли и космонавт Сернан.

Число Пи – удивительная константа, которая нашла своё применения в самых разных областях, начиная от техники и строительства и заканчивая сферами искусства

Как и любая другая величина, которая применяется часто и которую невозможно вычислить полностью, она всегда будет привлекать к себе внимание математиков, физиков и других учёных

Список источников

  1. Жуков А.В. Вездесущее число Пи – М.:Изд-во ЛКИ, 2007 – 216 с.
  2. Ф.Рудио. О квадратуре круга, с приложением истории вопроса, составленной Ф.Рудио. / Рудио Ф. – М.: ОНТИ НКТП СССР, 1936. – 235c.
  3. Arndt, J. Pi Unleashed / J. Arndt, C. Haenel. – Springer, 2001. – 270p.
  4. Шухман, Е.В. Приближенное вычисление числа Пи с помощью ряда для arctg x в опубликованных и неопубликованных работах Леонарда Эйлера / Е.В. Шухман. — История науки и техники, 2008 – №4. – С. 2-17.
  5. Euler, L. De variis modis circuli quadraturam numeris proxime exprimendi/ Commentarii academiae scientiarum Petropolitanae. 1744 – Vol.9 – 222-236p.
  6. Шумихин, С. Число Пи. История длиною в 4000 лет / С. Шумихин, А. Шумихина. — М.: Эксмо, 2011. — 192с.
  7. Борвейн, Дж.М. Рамануджан и число Пи. / Борвейн, Дж.М., Борвейн П.Б. В мире науки. 1988 – №4. – С. 58-66.
  8. Alex Yee. Number world. Access mode: numberworld.org

8 января 2015 Избранное, Математика

Веду имейл-рассылку о презентациях.

Читая рассылку, можно узнать о том, как сделать хотя бы не уродскую презентацию. В идеале — научиться доносить идеи понятно и красиво.

Будет полезно всем, кто делает презентации для отправки по почте, демонстрации на встречах, проведения уроков, курсов или выступления на публичных мероприятиях.

Подписаться на рассылку

Аналитический период

Несмотря на это, до середины 17 века все попытки европейских учёных вычислить число \( \pi \) сводились к увеличению сторон многоугольника. Так например, голландский математик Лудольф ван Цейлен (1540-1610 гг.) вычислил приближенное значение числа \( \pi \) с точностью до 20-ти десятичных цифр.

На вычисление ему понадобилось 10 лет. Удваивая по методу Архимеда число сторон вписанных и описанных многоугольников, он дошел до \(60 \cdot 2^{29} \) — угольника с целью вычисления \( \pi \) с 20 десятичными знаками.

После смерти в его рукописях были обнаружены ещё 15 точных цифр числа \( \pi \). Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число \( \pi \) иногда называли «лудольфовым числом» или «константой Лудольфа».

Одним из первых, кто представил метод, отличный от метода Архимеда, был Франсуа Виет (1540-1603 гг.). Он пришел к результату , что круг, диаметр которого равен единице, имеет площадь:

\

С другой стороны, площадь равна \(\frac{\pi}{4} \). Подставив и упростив выражение, можно получить следующую формулу бесконечного произведения для вычисления приближенного значения \(\frac{\pi}{2} \):

\

Полученная формула представляет собой первое точное аналитическое выражение для числа \( \pi \). Кроме этой формулы, Виет, используя метод Архимеда, дал с помощью вписанных и описанных многоугольников, начиная с 6-угольника и заканчивая многоугольником с \(2^{16} \cdot 6 \) сторонами приближение числа \( \pi \) с 9 правильными знаками.

Английский математик Уильям Броункер (1620-1684 гг.), используя цепную дробь , получил следующие результаты вычисления \(\frac{\pi}{4}\):

\

Данный метод вычисления приближения числа \(\frac{4}{\pi} \) требует довольно больших вычислений, чтобы получить хотя бы небольшое приближение.

Получаемые в результате подстановки значения то больше, то меньше числа \( \pi \), и каждый раз все ближе к истинному значению, но для получения значения 3,141592 потребуется совершить довольно большие вычисления.

Другой английский математик Джон Мэчин (1686-1751 гг.) в 1706 году для вычисления числа \( \pi \) со 100 десятичными знаками воспользовался формулой, выведенной Лейбницем в 1673 году, и применил её следующим образом:

\

Ряд быстро сходится и с его помощью можно вычислить число \( \pi \) с большой точностью. Формулы подобного типа использовались для установки нескольких рекордов в эпоху компьютеров.

В XVII в. с началом периода математики переменной величины наступил новый этап в вычислении \( \pi \). Немецкий математик Готфрид Вильгельм Лейбниц (1646-1716 гг.) в 1673 году нашел разложение числа \( \pi \), в общем виде его можно записать следующим бесконечным рядом:

\

Ряд получается при подстановке x = 1 в \(arctg x = x — \frac{x^3}{3} + \frac{x^5}{5} — \frac{x^7}{7} + \frac{x^9}{9} — \cdots\)

Леонард Эйлер развивает идею Лейбница в своих работах, посвященных использованию рядов для arctg x при вычислении числа \( \pi \). В трактате «De variis modis circuli quadraturam numeris proxime exprimendi» (О различных методах выражения квадратуры круга приближенными числами), написанном в 1738 году, рассматриваются методы усовершенствования вычислений по формуле Лейбница.

Эйлер пишет о том, что ряд для арктангенса будет сходиться быстрее, если аргумент будет стремиться к нулю. Для \(x = 1\) сходимость ряда очень медленная: для вычисления с точностью до 100 цифр необходимо сложить \(10^{50}\) членов ряда. Ускорить вычисления можно, уменьшив значение аргумента. Если принять \(x = \frac{\sqrt{3}}{3}\), то получается ряд

\

По утверждению Эйлера, если мы возьмем 210 членов этого ряда, то получим 100 верных знаков числа. Полученный ряд неудобен, потому что необходимо знать достаточно точное значение иррационального числа \( \sqrt{3} \). Также Эйлер в своих вычислениях использовал разложения арктангенсов на сумму арктангенсов меньших аргументов :

\

\

\

\

Далеко не все формулы для вычисления \(\pi \), которые использовал Эйлер в своих записных книжках, были опубликованы. В опубликованных работах и записных книжках он рассмотрел 3 различных ряда для вычисления арктангенса, а также привел множество утверждений, касающихся количества суммируемых членов, необходимых для получения приближенного значения \(\pi \) c заданной точностью.

В последующие годы уточнения значения числа \( \pi \) происходили все быстрее и быстрее. Так, например, в 1794 году Георг Вега (1754-1802 гг.) определил уже 140 знаков , из который только 136 оказались верными.

Обработка сигналов и преобразование Фурье

Число Пи играет важную роль при передаче сигналов

Чаще всего число Пи используют в таких геометрических задачах, как измерение окружности, тем не менее, его роль важна и в обработке сигналов, в основном в процессе, известном как преобразование Фурье, которое трансформирует сигнал в спектр частот. Преобразование Фурье называют «отображением частотной области» изначального сигнала, где оно соотносится как с областью частоты, так и с математическими операциями, которые объединяют область частот и функцию времени.

Люди и технологии используют этот феномен, когда необходимо базовое преобразование сигнала, например, когда ваш iPhone принимает сообщение от вышки сотового оператора, или когда ваше ухо различает звуки разных частот. Пи, которое фигурирует в формуле преобразования Фурье, играет решающую и, вместе с тем, странную роль в процессе преобразования, так как лежит в экспоненте числа Эйлера (известная математическая постоянная 2,71828 . . .)

Следовательно, вы можете благодарить число Пи каждый раз, когда вы делаете звонок по мобильному или слушаете транслируемый сигнал.

Слайды и текст этой презентации

Слайд 1

Текст слайда:

Число «Пи» в современной математике.

Слайд 2

Текст слайда:

В современной математике число π — это не только отношение длины окружности к диаметру, оно входит в большое число различных формул, в том числе и в формулы неевклидовой геометрии. Входит она и в замечательную формулу Л.Эйлера, которая устанавливает связь числа “пи” и числа “е”. Эта и другие взаимосвязи позволили математикам ещё глубже выяснить природу числа π.

Леонард Эйлер (1707 — 1783)

Слайд 3

Текст слайда:

В цифрах после запятой нет цикличности и системы, то есть в десятичном разложении Пи присутствует любая последовательность цифр, какую только можно себе представить (включая очень редко встречающуюся в математике последовательность из миллиона нетривиальных нулей, предсказанную немецким математиком Бернгардтом Риманом еще в 1859-м).

Это значит, что в Пи, в закодированном виде, содержатся все написанные и ненаписанные книги, и вообще любая информация, которая существует

Слайд 4

Текст слайда:

Через число Пи может быть определена любая другая константа, включая постоянную тонкой структуры (альфа), константу золотой пропорции (f=1,618…), не говоря уж о числе e — именно поэтому число пи встречается не только в геометрии, но и в теории относительности, квантовой механике, ядерной физике и т.д. Более того — недавно учёные установили, что именно через Пи можно определить местоположение элементарных частиц в Таблице элементарных частиц (ранее это пытались сделать через Таблицу Вуди), а сообщение о том, что в недавно расшифрованном ДНК человека число Пи отвечает за саму структуру ДНК (достаточно сложную, надо отметить), произвело эффект разорвавшейся бомбы!

Слайд 5

Текст слайда:

Человеческий мозг содержит 100 млрд. нейронов, число знаков Пи после запятой вообще стремится к бесконечности, в общем, по формальным признакам оно может быть разумным. Но ведь если верить работе американского физика Дэвида Бейли и канадских математиков Питера Борвина и Саймона Плофе, последовательность десятичных знаков в Пи подчиняется теории хаоса, грубо говоря, число Пи это и есть хаос в его первозданном виде. Может ли хаос быть разумным? Конечно! Точно так же, как и вакуум, при его кажущейся пустоте, как известно, отнюдь не пуст. Более того, при желании, можно этот хаос представить графически — чтобы убедиться, что он может быть разумным.

Слайд 6

Текст слайда:

Станислав Улам (1909-1984).

В 1965-ом году американский математик польского происхождения Станислав М. Улам (именно ему принадлежит ключевая идея конструкции термоядерной бомбы), присутствуя на одном очень длинном и очень скучном (по его словам) собрании, чтобы как-то развлечься начал писать на клетчатой бумаге цифры, входящие в число Пи. Поставив в центре 3 и двигаясь по спирали против часовой стрелки, он выписывал 1, 4, 1, 5, 9, 2, 6, 5 и прочие цифры после запятой. Без всякой задней мысли он попутно обводил все простые числа чёрными кружками. Вскоре, к его удивлению, кружки с поразительным упорством стали выстраиваться вдоль прямых — то, что получилось, очень было похоже на нечто разумное. Особенно, после того, как Улам сгенерировал на основе этого рисунка цветовую картину, с помощью специального алгоритма.

Слайд 7

Текст слайда:

Эту картинку, которую можно сравнить и с мозгом, и со звёздной туманностью, можно смело называть «мозгом числа π».

Слайд 8

Текст слайда:

Но если так, приходило ли число Пи в наш мир, в облике обычного человека?

Приведённые примеры показывают, что разумное число так же нарочно персонифицируется, общаясь с учёными как некая сверхличность.

Слайд 9

Текст слайда:

Но ведь год (1592) может определяться по собственному, более логичному для Пи летоисчислению. Если принять это предположение, то претендентов на роль числа Пи становится много больше. Самый очевидный из них — Альберт Эйнштейн, родившийся 14 марта 1879-го. Но 1879 год это и есть 1592 год относительно 287 года до нашей эры! А почему именно 287? Да потому что именно в этом году родился Архимед, впервые в мире вычисливший число Пи как отношение длины окружности к диаметру и доказавший, что оно одинаково для любого круга!

Слайд 10

Текст слайда:

Выход нового диска Кейт Буш «Aerial» заставил сердца математиков забиться сильнее. В песне, которую певица так и назвала – «Пи», прозвучали 124 числа из знаменитого числового ряда 3,141…

КЕЙТ БУШ

Слайд 11

Текст слайда:

С давних времен загадка этого числа не давала покоя многим ученым, особенно математикам — именно в этой области многие разделы науки не могут обойтись без законов этого таинственного числа.

π заворожило не только Кейт Буш.

Вычисление Пи вручную

Если вы хотите найти число самостоятельно, вы можете использовать старомодную технику – вам потребуются линейка, банка и веревка, можно также использовать транспортир и карандаш. Минус использования банки в том, что она должна быть круглой, и точность будет определяться тем, насколько хорошо человек может наматывать веревку вокруг нее. Можно нарисовать окружность транспортиром, но и это требует навыков и точности, так как неровная окружность может серьезно исказить ваши измерения. Более точный метод предполагает использование геометрии. Разделите круг на множество сегментов, как пиццу на кусочки, а потом вычислите длину прямой линии, которая превратила бы каждый сегмент в равнобедренный треугольник. Сумма сторон даст приблизительное число Пи. Чем больше сегментов вы используете, тем более точным получится число. Разумеется, в своих вычислениях вы не сможете приблизиться к результатам компьютера, тем не менее эти простые опыты позволяют более детально понять, что вообще представляет собой число Пи и каким образом оно используется в математике.

Скромник Бигги купил дом за 2,6 млн: в каких условиях живет сын Майкла Джексона

Нашла несколько интересных рецептов кутьи: с соком, орехами и другие

Ученые заявили о резком развитии близорукости у школьников из-за удаленки

Прочие факты о числе Пи

У числа Пи имеется два неофициальных праздника. Первый из них, отмечается в день 14 марта, в связи с тем, что дата этого дня в США записывается, как 3.14. Второй праздник отмечается 22 июля, дата которого записывается в европейском формате дат, как 22/7, что в результате деления этой дроби является приближённым значением числа Пи.

Использование числа Пи, с точностью до девятого знака, при расчётах длины экватора Земли даёт погрешность около 6 миллиметров.

На полях в Великобритании, в 2008 году, появились таинственные круги, в которых учёные сумели определить зашифрованную последовательность первых 10 цифр числа Пи.

Число Пи также было найдено в квантовой механике. Физик Карл Хаген и математик Тамар Фридман из Рочестерского университета в штате Нью-Йорк вывели формулу для числа Пи из квантовой механики. Они использовали вариационный принцип для определения энергетических уровней атома водорода.

В данном случае траектория электрона в атоме водорода описывается методами классической физики и расположена на сфере. Из конечного выражения для подобного энергетического уровня ученым удалось найти формулу для вычисления числа Пи.


Это выражение исследователями было записано в виде формулы Валлиса, представляющей собой произведение бесконечного числа множителей и была получена ещё в 1655 году английским математиком Джоном Валлисом.

В начале 2000-х годов немецкий математик Герард Штеффенс выяснил, что для доменного имени существует предел в 63 символа, и определил, какие длинные имена уже были разобраны. Свой домен 3.141592653589793238462643383279502884197169399375105820974944592.com он приобрел у индийца, который хвастался тем, что адрес его домена стал первым из самых длинных имён.

При этом, учёный способен по памяти воспроизвести все цифры доменного имени сайта, которым он владеет. Однако, самым интересным фактом, является то, что на сайте есть предложение автора отыскать или угадать страницу, на которой по его заверениям отображается 1 миллион знаков числа Пи. При этом, какой-либо конкретной ссылки на эту страницу вы не найдете.

Кстати существует сайт pi.com, на котором вы найдете лишь запись из нескольких знаков числа Пи. Обратиться к автору можно только перечислив любым из предлагаемых способов 3 доллара.

1 апреля 1998 года учеными из организации «New Mexicans for Science and Reason» была опубликована заметка о том, что законодательными органами власти штата Алабама было принято постановление об изменении значения числа «Пи» с 3,1415 на 3,0. Статья была подхвачена интернет-сообществом и получила большую огласку в сети. Люди начали тревожить настойчивыми звонками алабамских чиновников, высказывая протесты против этих нововведений.

История числа ПИ

Число Пи показывает соотношение длины окружности к диаметру. Этот расчет применяют везде: от чертежей будущей банки для кока-колы до сложных расчетов, связанных с космосом.

Кому принадлежит первая заслуга вычисления не известно.

Впервые буквенное обозначение стал использовать У. Джонс в начале 18 века. Он взял за основу букву из греческого алфавита. Кроме того, с этой буквы начинались греческие слова: окружность, круг и т.д.

О том, что соотношение длины окружности к диаметру всегда остается прежним заметили еще жители Междуречья. Под Пи они понимали число, равное 3.

Египтяне были точнее. Доказательством этому служат найденные папирусы с математическими расчетами (папирусы Ринда). Письмена составлял писец Армес. Доказано, что свитки были записаны примерно в 2000 году до н. э.

Эти свидетельства хранятся в музее Нью-Йорка.

Архимед подкорректировал имеющиеся таблицы и вывел более точное значение числа Пи.

Математик Лудольф ван Цейлен (16 век) смог вычислить значение Пи, уточнив его до 20 десятичных цифр. Для вычислений он использовал метод Архимеда.

Альтернативный способ вычислить Пи применил Франсуа Виет. Он смог дать более точное значение Пи.

Отметим, что вычисления проводило множество математиков из разных стран. Все попытки приводили к улучшению результата.

Работы по уточнению Пи возобновились с приходом в нашу жизнь ЭВМ и компьютерных программ.

В настоящее момент рекорд оставлен за Александра Йи и Сингеру Кондо. Они смогли вычесть число Пи до 12,1 триллиона цифр после запятой. Таким образом, история числа Пи еще продолжается.

Число Пи интересные факты

Число π по-английски произносится «пай» — это означает пирог, а слово пирог по-русски начинается с «пи».

cosπ=-1, а sinπ=0.

Число Пи имеет два неофициальных праздника в году: первый — 14 марта (в США эта дата записывается как 3.14), вторая — 22 июля (22/7 : деление 22 на 7 является приблизительным результатом Пи).

Станислав Улам, польский и американский математик, в 1965 году, написал на бумаге в клетку цифры, входящие в число пи. Он поставил в центре 3 и двигался по спирали против часовой стрелки, записывая числа после запятой, при этом он обводил все простые числа кружками.

Он пришёл одновременно в удивление и ужас, заметив, что кружки выстраивались вдоль прямых. После, с помощью специального алгоритма, математик сделал на основе этого рисунка цветовую картину, которую называют «Скатерть Улама».

Скатерть Улама

Число Пи можно даже играть на музыкальном инструменте поставив ноты в его порядке.

Числу «Пи» поставили несколько памятников по всему миру.

Памятник Пи в Колумбии, построенный Обществом инженеров Norte Santandereana, он расположен между Авенида Либертадорес и Ла Диагональ Сантандер.

Существует стиль письма, который называется «пилиш» (от «пи», английский «pilish»), в котором длина последовательных слов соответствует цифрам числа πи. В первом слове произведения должно быть 3 буквы, во втором — одна, потом — четыре, следом — опять одна, затем пять, и так далее по цифрам π.

Например, такая поэма на английском языке:

Запоминание Пи

Рекорд в запоминании цифр после запятой принадлежит Раджвиру Мине из Индии, которому удалось запомнить 70 000 цифр – он поставил рекорд двадцать первого марта 2015 года. До этого рекордсменом был Чао Лу из Китая, которому удалось запомнить 67 890 цифр – этот рекорд был поставлен в 2005-м. Неофициальным рекордсменом является Акира Харагучи, записавший на видео свое повторение 100 000 цифр в 2005-м и не так давно опубликовавший видео, где ему удается вспомнить 117 000 цифр. Официальным рекорд стал бы только в том случае, если бы это видео было записано в присутствии представителя книги рекордов Гиннеса, а без подтверждения он остается лишь впечатляющим фактом, но не считается достижением. Энтузиасты математики любят заучивать цифру Пи. Многие люди используют различные мнемонические техники, к примеру стихи, где количество букв в каждом слове совпадает с цифрами Пи. В каждом языке существуют свои варианты подобных фраз, которые помогают запомнить как первые несколько цифр, так и целую сотню.

Бабушка не тратит время на упаковку ёлочных игрушек: она берёт пищевую плёнку

Когда сосредоточиться на деньгах, и другие прогнозы астрологов на 2021 год

В чем секрет долгожителей? Вино, хлеб на закваске и другие советы по питанию

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий