Днк-анализ как рутинное исследование, или о чем способна рассказать ваша генетическая карта

Структура ДНК

Ранее ученые представляли, что модель строения ДНК периодическая, где повторяются одинаковые группы нуклеотидов (комбинаций молекул фосфата и сахара). Определенная комбинация последовательности нуклеотидов предоставляет возможность «кодировать» информацию. Благодаря исследованиям выяснилось, что у разных организмов структура различается.

Особенно известны в изучении вопроса, что такое ДНК американские ученые Александер Рич, Дэйвид Дэйвис и Гэри Фелзенфелд. Они в 1957 году представили описание нуклеиновой кислоты из трех спиралей. Спустя 28 лет, ученый Максим Давидович Франк-Каменицкий продемонстрировал, как дезоксирибонуклеиновая кислота, которая состоит из двух спиралей, складывается Н-образной формой из 3 нитей.

Структура у дезоксирибонуклеиновой кислоты двухцепочечная. В ней нуклеотиды попарно соединены в длинные полинуклеотидные цепи. Эти цепочки при помощи водородных связей делают возможным образование двойной спирали. Исключение – вирусы, у которых одноцепочечный геном. Существуют линейные ДНК (некоторые вирусы, бактерии) и кольцевые (митохондрии, хлоропласты).

Что нужно для анализа ДНК?

Анализ ДНК стал популярным не только в медицине, но и в криминалистике, позволяя доказать участие подозреваемого в преступлении. Сегодня же все чаще такое исследование упоминают на скандальных ток-шоу, где выясняют отцовство. Сравнение ДНК ребенка и его потенциального родителя практически на 100% дает ответ о возможном родстве. При этом для анализа не требуется сложный забор биоматериала. ДНК содержится практически во всех живых клетках: в слюне, крови, сперме, эпителии, ушной сере. Но чтобы получить достоверный результат, лучше сдавать для анализа кровь из вены непосредственно в лаборатории. Сам анализ проводится в несколько этапов и требует применения технологичного оборудования и специальных реактивов. Именно поэтому тест на ДНК проводят в крупных клиниках в больших городах, а вот забор биоматериала (кусочек ногтя, ватная палочка в пробирке, следы слюны) можно осуществить на месте, а потом отправить почтой. И хотя такой тест и не будет иметь юридической силы, результат окажется довольно точным.

В ходе чтения молекулы ее сперва выделяют, потом многократно копируют и нарезают на кусочки для анализа. Азотистые основания подкрашивают специальным светящимся красителем, который распознается при лазерном просвечивании. Методов анализа ДНК разработано уже несколько, они постоянно улучшаются за счет модернизации приборов и улучшения компьютерных программ. Это позволяет постепенно снижать стоимость такого анализа.

Наша ДНК – настоящий кладезь информации и, возможно, та самая волшебная палочка, которая позволит в будущем нам как минимум бороться с наследственными заболеваниями и, как максимум, модернизировать свое тело. И если бессмертие – спорный вопрос, которому природа противится, то в продлении нашей жизни и улучшении ее качества изучение ДНК может помочь.

Как проводится тест ДНК

Количество компаний, которые предоставляют услуги генетического анализа, постоянно растёт.

У каждой организации, своя область специализации, но в целом, можно выделить два основных направления их работы – это исследования, сфокусированные на состоянии здоровья клиента и исследования, связанные с генеалогией.

Анализ ДНК может проводиться в медицинском учреждении общего профиля или в компании, оказывающей услуги лабораторной диагностики. В последние годы появилась возможность сделать ДНК-тест по почте.

Так как эта технология используется для решения огромного количества задач, методы проведения исследования могут различаться в зависимости от цели.

Во всех случаях действует общий основной алгоритм:

  1. Сбор генетического материала. В большинстве случаев ватной палочкой берется мазок с внутренней части щеки. Если исследование проводится по почте, клиенту высылается специальный сосуд для образца слюны или соскоба. В случае необходимости ДНК выделяют из таких биоматериалов, как кровь, срезы ногтей, волосы, эякулят.
  2. Выделение ДНК и проведение исследований. Собранный биоматериал отправляется в лабораторию, где происходит выделение и очищение ДНК. Выделенный образец в составе раствора помещается в генетический анализатор. Там он попадает под действие лазера, который регистрирует уникальные участки ДНК. Все данные передаются на компьютер, где обрабатываются при помощи специального программного обеспечения.
  3. Обработка результатов и выдача их клиенту. Эксперты расшифровывают полученные данные, приводят их в понятную и удобную для восприятия форму, а затем передают клиенту.

Симптоматика для проведения определения антиДНК

  • Увеличивается температура тела, лимфатические узлы, снижается вес, появляется усталость.
  • При артрите, воспалении сустава, проявляемом отечностью, болью, повышением температуры на этом участке, покраснением кожи и нарушением подвижности.
  • При появлении атипичных психических и неврологических симптомов.
  • При плеврите или перикардите неясного происхождения.
  • При синдроме Рейно, то есть периодическом изменении цвета пальцев кистей и стоп (покраснение, бледность, посинение), нарушением их чувствительности и болями.
  • При заболеваниях почек, имеющих иммунный генез или изменениях результатов анализа мочи (гематурия, протеинурия).
  • При кожных симптомах – утолщении кожи, сыпи, особенно после солнечных ванн.
  • При гемолитической анемии, разрушении эритроцитов при повышении уровня билирубина в моче и крови.
  • При нейтропении, сниженном количестве нейтрофилов в лейкоцитарной формуле.
  • При тромбоцитопении, снижении числа тромбоцитов в крови.

Антитела к двуспиральной ДНК: норма

В норме результат анализа должен быть отрицателен, а концентрация 0-25 МЕ/мл.

Если результат положителен, можно говорить о: первичном билиарном циррозе; СКВ; инфекционном мононуклеозе; эффективности лечения (СКВ в стадии ремиссии); хроническом гепатите С и В; синдроме Шегрена; смешанном заболевании соединительной ткани.

ДНК двуспиральная и антитела (IgG и IgM иммуноглобулины) образуют иммунный комплекс. Он и обуславливает определенную симптоматику, характерную для СКВ.

Если результат отрицателен, говорят о лекарственной волчанке или об отсутствии СКВ.

Что влияет на результат анализа?

  • Высокие показатели антиДНК ассоциируются с люпус нефритом, обострением заболевания или отсутствием контроля за болезнью.
  • Низкие показатели антиДНК ассоциируются с эффективностью проводимой терапии и достижением стадии ремиссии заболевания.
  • АнтиДНК является специфическим показателем СКВ, но может наблюдаться также и при других болезнях (аутоиммунных, хроническом гепатите С и В).
  • Если антиДНК отсутствует, это не исключает диагноз СКВ.
  • Обнаружение антиДНК у больного без каких-либо симптомов и прочих критериев этой болезни не трактуют в пользу постановки диагноза СКВ.

Важные замечания

Анализ крови на антитела к двуспиральной ДНК проводится вместе с нижеприведенными исследованиями:

  • бета-2-микроглобулином;
  • общим анализом крови;
  • антицентромерными антителами;
  • общим анализом мочи;
  • антигистоновыми антителами;
  • печеночными пробами (щелочная фосфатаза, билирубин, ГГТ, АСТ, АЛТ);
  • ревмопробами (АСЛО, С-реактивный белок, ревматоидный фактор, скорость оседания эритроцитов);
  • антителами к цитруллиновому пептиду (АЦЦП);
  • антинуклеарными антителами (ANA). Являются самыми хорошо изученными аутоантителами наряду с ревматоидным фактором. Были открыты в 1957 г., и одновременно исследователи доказали связь с СКВ. При этом антитела к двуспиральной ДНК повышены;

anti-SSB и anti-SSA антителами;

anti-SCL-70 антителами;

anti-nRNP антителами;

  • anti-Sm антителами;
  • anti-sp100 антителами.

Два факта об антиДНК

Кроме того, антиДНК появляется в крови в связи со следующими причинами:

  • миеломной болезни;
  • СКВ, критерием диагноза которой является получение положительного результата исследования;
  • правовирусной инфекции;
  • лекарственно инуцированной СКВ;
  • ВИЧ;
  • синдроме Шегрена;
  • цитомегаловирусной инфекции;
  • синдроме Шарпа (смешанном заболевании соединительной ткани);
  • инфекционном мононуклеозе;
  • ревматоидном артрите;
  • первичном билиарном циррозе;
  • системной склеродермией;
  • вирусном гепатите С;
  • вирусном гепатите В.

Как делают тест ДНК

ДНК содержится в большинстве клеток нашего тела, и почти во всех из них ее состав одинаков, кроме сперматозоидов и яйцеклеток. Поэтому материала для генетического анализа в организме более чем достаточно — это может быть слюна, ногти, волосяные луковицы, ушная сера, мазок с внутренней поверхности щеки (последний используется чаще всего, так как эту пробу несложно правильно взять самостоятельно и отправить специалисту).

Генетический материал можно отправить в лабораторию по почте и получить точный результат — центр MyGenetics работает именно так. Сдать анализы для него и получить отчет возможно из любой точки страны.

Геном червя и геном человека

«Геном человека» — это международный научно-исследовательский проект, в котором задействованы сотни ученых, задавшихся целью создать полную карту человеческой ДНК. Он был начат в 1980-х годах, тогда методы исследований были достаточно примитивными и биологи думали, что на расшифровку каждого участка ДНК уйдут годы. К счастью, впоследствии развитие компьютерных технологий значительно ускорило этот процесс.

В 1985 году была завершена и опубликована первая полная последовательность ДНК живого организма. Правда, этим организмом была всего лишь крошечная бактерия, и на ее изучение ушло несколько лет. Тем не менее это значительное достижение в области генетики. Затем ученые взялись за более сложные многоклеточные организмы. В 1998 году они расшифровали геном плоского червя.

А уже в 2001 году благодаря применению «метода беспорядочной стрельбы» был составлен черновой набросок генома человека. Этот метод, придуманный американским исследователем Крейгом Вентером, заключается в том, что каждую ДНК, извлеченную из клетки, разбивают на небольшие фрагменты. Каждый из этих фрагментов помещают в аппарат, который определяет последовательность составляющих их элементов. После чего ДНК снова «собирают» и изучают ее целостное строение.

Черновой набросок — это еще далеко не конец проекта. Теперь ученым предстоит еще более сложная и скрупулезная работа — изучение каждого гена и составляющих его белков, выявление связей между генами, исследование механизма образования индивидуального биологического портрета каждого человека. По приблизительным оценкам, если не случится еще один технологический прорыв, на это понадобится не одно десятилетие.

Поделиться ссылкой

Секвенирование нового поколения (NGS)

Появление высокопроизводительных методов (в ходе такого секвенирования миллионы фрагментов ДНК из одного образца секвенируются одновременно) или секвенирования нового (следующего) поколения (next-generation sequencing, NGS) позволило значительно ускорить поиск функциональных участков генома . Биотехнологические компании разработали и коммерциализировали различные платформы для NG-секвенирования, позволяющие секвенировать от 1 млн до десятков млрд коротких последовательностей (ридов, reads) длиной 50–600 нуклеотидов каждая. К наиболее популярным платформам относятся такие, как Illumina и IonTorrent, использующие амплификацию ДНК с помощью ПЦР , а также платформы одномолекулярного секвенирования, такие как Helicos Biosciences HeliScope, Pacific Biosciences SMRT (single molecule real-time sequencing), и нанопорового секвенирования Oxford Nanopore, осуществляющие секвенирование в реальном времени и позволяющие прочитывать значительно более длинные риды — до 10–60 тыс. нуклеотидов. Кроме того, изобретение секвенирования РНК (RNA-seq) в 2008 году, которое создавалось для количественного определения экспрессии генов, также способствовало обнаружению транскрибируемых последовательностей, как кодирующих, так и некодирующих РНК .

Благодаря NGS, базы данных днкРНК и других генов РНК (таких как микро-РНК) резко выросли за десятилетие, и текущие каталоги генов человека теперь содержат больше генов, кодирующих РНК, чем белки (табл. 2).

Таблица 2. Количество разных типов генов в следующих базах данных: Gencode, Ensembl, RefSeq, CHESS
Типы генов
Белок-кодирующие гены 19 901 20 376 20 345 21 306
Гены длинных некодирующих РНК 15 779 14 720 17 712 18 484
Антисмысловые РНК 5501 28 2694
Другие некодирующие РНК 2213 2222 13 899 4347
Псевдогены 14 723 1740 15 952
Общее число транскриптов 203 835 203 903 154 484 323 827

Рисунок 3. Последовательность ДНК, получаемая после секвенирования человеческого генома

В ходе секвенирования РНК обнаружилось, что альтернативный сплайсинг, альтернативное инициирование транскрипции и альтернативное прерывание транскрипции проиcходят гораздо чаще, чем полагали, затрагивая до 95% человеческих генов. Следовательно, даже если известно местоположение всех генов, сначала нужно выявить все изоформы этих генов, а также определить, выполняют ли эти изоформы какие-либо функции или они просто представляют собой ошибки сплайсинга.

Минимальная мышь

В связи с вышесказанным существует точка зрения, что большая часть генома человека не функциональна. В 2004 году журнал Nature опубликовал статью, описывавшую мышей, из генома которых были вырезаны значительные фрагменты некодирующей ДНК размером в 1,5 миллиона и 0,8 миллионов нуклеотидов. Было показано, что эти мыши не отличаются от обычных строением тела, развитием, продолжительностью жизни или способностью оставлять потомство . Разумеется, какие-то отличия могли остаться незамеченными в лаборатории, но в целом это был серьезный аргумент в пользу существования «мусорной ДНК» , от которой можно избавиться без серьезных последствий. Конечно, было бы интересно вырезать не пару миллионов нуклеотидов, а миллиард, оставив только предсказанные последовательности генов и известные функциональные элементы. Удастся ли вывести подобную «минимальную мышь», и сможет ли она нормально существовать? Может ли человека обойтись геномом «длиной лишь в половину метра»? Возможно, когда-нибудь мы об этом узнаем. Тем временем еще одним важным аргументом в пользу существования мусорной ДНК является наличие достаточно близких организмов с очень разными размерами геномов. Геном рыбы фугу примерно в 8 раз меньше, чем геном человека (хотя генов в нем примерно столько же)  и в 330 раз меньше, чем геном уже упомянутой рыбы протоптер. Если бы каждый нуклеотид в геноме был функционален, то был бы уместен и такой вопрос: зачем луку геном в пять раз больший, чем нам с вами?

Рисунок 1. Look!

На колоссальные различия в размерах геномов сходных организмов обратил внимание эволюционный биолог Сусуму Оно (Susumu Ohno). Считается, что именно Оно ввел термин «Мусорная ДНК» (Junk DNA) 

Оказывается, что еще в 1972 году, задолго до того, как был прочитан геном человека, Оно имел правдоподобные представления как о количестве генов в геноме человека, так и о количестве «мусора» в нем. В своей статье «Столько мусорной ДНК в нашем геноме»  он отмечает, что в геноме человека должно быть около 30 000 генов. Это число близкое к правде, как мы узнали десятки лет спустя, но на тот момент совсем не очевидное. Кроме того, Оно приводит оценку функциональной доли генома (6%), объявляя более 90% генома человека мусором.

Как и для чего делают ДНК тест?

Так как ДНК содержится в каждой клетке нашего тела, изучая генетический материал – кровь, кожу, волосы, слюну и т.п. – с помощью принципов микробиологии – ученые могут узнать владельца конкретной ДНК. Однако для получения точных результатов специалисты советуют сдать кровь из вены. Сегодня анализ ДНК позволяет определить наследственную предрасположенность к разным заболеваниям, которыми страдали или страдают родственники человека. Одним из таких заболеваний является шизофрения – в своей предыдущей статье я подробно рассказывала о том, почему эту болезнь так сложно лечить и изучать.

Более того, проанализировав ДНК специалисты могут рассказать о том, какие заболевания могут возникнуть у человека в будущем, определить индивидуальную непереносимость лекарств, склонность к наркомании и алкоголизму и многое другое.

ДНК есть у всех живых организмов.

Наиболее распространенным тестом ДНК является метод полимеразной цепной реакции или ПЦР. На сегодняшний день это один из новейших и наиболее точных способов диагностики. Несмотря на то, что этот метод до сих пор считается экспериментальным, он широко и успешно применяется в медицине. Так, большинство тестов на наличие/отсутствие в организме нового коронавируса SARS-CoV-2, которые проводятся во всем мире, являются именно ПЦР-тесты. Метод ПЦР в 1993 году разработал ученый Кэри Муллис, который получил за свое открытие Нобелевскую премию. Суть метода заключается в применении особых ферментов, которые много раз копируют фрагменты ДНК возбудителей болезни (как, например, с коронавирусом) которые можно обнаружить в пробах генетического материала, например в крови. Затем специалисты сверяют полученные фрагменты с базой данной, что позволяет выявить тип возбудителя болезни и его количество в организме.

Так выглядит амплификатор

Однако выявление и определение склонности к заболеваниям не является единственной областью, в которой прибегают к использованию тестов ДНК. Так, появление ДНК-тестов – как в свое время дактилоскопия (метод определения отпечатков пальцев) – изменило криминалистику. Благодаря анализу ДНК следователи имеют возможность собрать генетический материал преступника и поймать его. Но самое популярное использование ДНК-тестов – определение отцовства. Возможно дело в том, что этот анализ позволяет получить практически 100% результат. Недавно мой коллега Николай Хижняк в своей статье подробно рассказал о будущих возможностях исследования ДНК, рекомендую к прочтению.

Подводя черту отмечу, что сегодня загадка кода ДНК еще не раскрыта. Мы стоим в самом начале познания, что же это такое на самом деле? Приоткрыв небольшую щелочку двери мы можем только догадываться о том, какие перспективы в будущем для человека может открыть понимание что такое ДНК и как мы можем использовать эти знания!

Может ли тест ошибиться?

Вопрос о том, может ли ДНК-тест выдать ложный результат, давно обсуждается учеными и обычными людьми.

Во-первых, о подлинности свидетельствует тот факт, что специалист, анализирующий результаты теста, несет ответственность по статье 307 Уголовного кодекса Российской Федерации за предоставление заведомо ложных сведений.

Во-вторых, по числу, указанному в заключении, можно понять вероятность отцовства. Если результат в десятичной дроби представлен в виде числа «99» с большим количеством цифр после запятой, это является существенным подтверждением биологического родства мужчины с ребенком.

Чтобы стандартизировать результаты, Международная организация идентификации человека установила следующие значения:

  • 99,75-99,99% – отцовство доказано;
  • 99-99,7% – родство подтверждено с высокой степенью вероятности;
  • 95-98,5% – отцовство вполне возможно;
  • 90-94,5% – родство вероятно.

В-третьих, вероятность положительного или отрицательного результата зависит от количества взятых для анализа локусов. Если их использовалось 25, возможность отцовства составит 99.999999% и более. Сегодня вероятность ошибочности теста ДНК на установление отцовства почти исключается, так как исследование производится расчетным путем, описанным выше.

Если родство мужчины и ребенка устанавливается на основании полимеразной цепной реакции, гарантируется точный результат (соотношение ошибок и достоверных следствий – 1:10000).

Мнение эксперта
Ирина Васильева
Эксперт по гражданскому праву

При возникновении просчета, следует сдать повторный ДНК-анализ. Если визуальные признаки отца и ребенка явно совпадают с генетическими, нет острой необходимости в повторении процедуры.

Дорогие читатели! Для решения вашей проблемы прямо сейчас, получите бесплатную консультацию — обратитесь к дежурному юристу в онлайн-чат справа или звоните по телефонам:Вам не нужно будет тратить свое время и нервы — опытный юрист возмет решение всех ваших проблем на себя!

Что для одного — находка, для другого — мусор

Вызов представлению о существовании мусорной ДНК бросил проект ENCODE (Энциклопедия элементов ДНК). Получив многочисленные экспериментальные данные о том, какие части генома человека взаимодействуют с различными белками, участвуют в транскрипции или других биохимических процессах, авторы пришли к выводу, что более 80% генома человека так или иначе функциональны . Разумеется, данный тезис вызывал бурное обсуждение в научном сообществе , .

Одна из наиболее ироничных статей, критичная к данному выводу консорциума ENCODE, называется так: «О бессмертии телевизоров: „функция“ в геноме человека по лишенному эволюции Евангелию от ENCODE» . Статья начинается с эпиграфа, который я утащил в начало текста. Ее авторы профессор Дэн Граур (Dan Graur) и коллеги отмечают, что отдельные члены консорциума ENCODE расходятся в том, какая часть генома функциональна. Так, один из них впоследствии уточнил, что речь идет не о 80% функциональных последовательностей в геноме, а о 40% , а другой и вовсе снизил показатель до 20% , но при этом продолжал настаивать, что термин «мусорная ДНК» нужно «устранить из лексикона». Над этим подшутили, что была изобретена новая арифметика, согласно которой 20% больше, чем 80% .

Возникает проблема и с приписыванием функции участкам ДНК. Предположим, что некоторый участок ДНК связывает важный белок, и поэтому ENCODE приписывает этому участку «функцию». Известно, что некоторый белок (транскрипционный фактор) связывается со следующей последовательностью нуклеотидов: TATAAA. Рассмотрим две идентичные последовательности TATAAA в разных частях генома

После того как транскрипционный фактор связывается с первой последовательностью, начинается синтез молекулы РНК, служащей матрицей для синтеза некоторого важного белка. Мутации в этой последовательности приведут к тому, что РНК будет считываться плохо, белок не будет синтезирован, и это, скорее всего, негативно скажется на выживании организма

Поэтому такая последовательность TATAAA будет поддерживаться в геноме с помощью естественного отбора, и в этом случае уместно говорить о наличии у нее функции. Вторая последовательность TATAAA возникла в геноме по случайным причинам. Поскольку она идентична первой, с ней тоже связывается транскрипционный фактор. Но никакого гена рядом нет, поэтому связывание ни к чему не приводит. Если в этом участке возникнет мутация, ничего не изменится, организм не пострадает. В данном случае говорить о функции TATAAA участка нет смысла. Впрочем, может оказаться, что наличие в геноме большого количества последовательностей TATAAA вдали от генов нужно просто для того, чтобы связывать транскрипционный фактор и уменьшать его эффективную концентрацию. В таком случае под отбором будет находиться число таких последовательностей в геноме.

Чтобы доказать, что некоторый участок ДНК функционален, недостаточно показать, что в этом участке происходит некий биологический процесс (например, связывание ДНК). Члены консорциума ENCODE пишут, что функцией обладают участки ДНК, которые вовлечены в транскрипцию

«Но почему нужно акцентировать внимание на том, что 74,7% генома транскрибируется, в то время как можно сказать, что 100% генома принимает участие в воспроизводимом биохимическом процессе — репликации!», — снова шутят Граур и коллеги

Что такое ДНК-тест

ДНК-тест – это анализ генетических последовательностей, который используется для различных целей, таких как определение родственных связей, диагностика заболеваний, проведение судебно-медицинской экспертизы и многого другого.

Дезорибонуклеиновая кислота (ДНК) – это молекула в виде двойной спирали, в которой хранится огромный объем биологической информации о живом организме, предающейся из поколения в поколение.

Для проведения теста, специалисты получают образец биоматериала и определяют последовательность нуклеотидов в цепочке ДНК. ДНК человека чрезвычайно длинная и заключает в себе около 20500 генов.

Поэтому расшифровкой нуклеотидной последовательности ДНК занимаются машины, а работники лабораторий имеют дело лишь с ее отдельными участками.

В наши дни сделать тест ДНК предельно просто – достаточно лишь сдать образец слюны и получить расшифровку результатов. Как правило, информация передается клиенту в наглядной форме – в виде графиков и таблиц, и сопровождается советами профессионалов.

Отличаются ли ДНК мужчины и женщины?

У большинства млекопитающих имеются по две половые хромосомы – у самок это две X, а у самцов X и Y. Разделение на два вида произошло более 100 миллионов лет назад. В Y-хромосоме значимым является ген SRY, который и запускает мужской тип развития организма. При оплодотворении яйцеклетка соединяется со сперматозоидом. От матери ребенок получает женскую Х-хромосому (одну из двух одинаковых), а от отца – либо Y, либо Х.

Конечная комбинация ХХ означает появление на свет девочки, а комбинация XY – даст жизнь мальчику. Так что не стоит винить матерей в том, что они рожают детей «не того» пола – решающую роль в этом играет организм отца.

Вполне логично, что новые знания побуждают ими воспользоваться. Если человек обнаружил тот самый «кирпичик», из которого построено его тело, то почему бы не попытаться осуществить перестройку или вообще сотворите нечто новое? Этим займется медицина будущего, а пока знания о ДНК позволяют решать менее масштабные задачи. Одной из них является анализ ДНК, позволяющий расшифровать часть ее информации. Еще в 2003 году ученые заявили, что выяснили местоположение всех генов, которые определяют наше развитие и жизнь.

Расшифровка слова днк человека. Использование в медицине и науке

Современная медицина имеет основную цель – это предупреждение различных заболеваний. И расшифровка ДНК имеет ключевое значение. Диагностика, как совокупность методов обнаружения заболевания, осуществляется согласно мировым стандартам. Инновационный метод диагностирования пациентов – это применение микроматриц ДНК, основанных на открытиях в области молекулярной генетики.  Такая миниатюрная матрица представлена цепочкой ДНК, содержащей большое количество фрагментов нуклеиновых кислот, закрепленных на специальной основе в определенной последовательности. Матрица выполнена с применением нанотехнологий, и состоит из стекла, силикона и нейлона. ДНК-матрицы способны одновременно выявить миллион мутаций, а также оценить процесс преобразования дезоксирибонуклеиновой в рибонуклеиновую кислоту у значительного количества генов.  Но полная последовательность нуклеиновой кислоты во всем геноме человека была раскрыта учеными в 2003 году, и это стало одним из великих открытий в науке. Ученые предположили, что отдельный ген может управлять своей функцией организма. И если составить таблицу генов и функций, за которые они отвечают, тогда появится возможность трансформировать тело человека, дабы не допустить развития многих заболеваний. Но гипотезу о том, что за изменения в организме ответственны только лишь гены, пришлось пересмотреть, так как число обнаруженных генов не соответствовало предполагаемому количеству.

Кто открыл­

Первое открытие структуры ДНК приписывают английским биологам Джеймсу Уотсону и Френсису Крику, которые в 1953 году раскрыли особенности строения молекулы. Нашел же ее в 1869 году швейцарский врач Фридрих Мишер. Он изучал химический состав животных клеток с помощью лейкоцитов, которые массово скапливаются в гнойных поражениях.

Мишер занимался изучением способов отмывания лейкоцитов, выделял белки, когда обнаружил, что кроме них есть что-то еще. На дне посуды во время обработки образовался осадок из хлопьев. Изучив эти отложения под микроскопом, молодой врач обнаружил ядра, которые оставались после обработки соляной кислотой. Там содержалось соединение, которое Фридрих назвал нуклеином (от лат. nucleus — ядро).

Базы данных генов человека

Задача по составлению каталога всех генов по-прежнему не решена. Проблема заключается в том, что за последние 15 лет только две исследовательские группы составили список доминантных генов: RefSeq, которая поддерживается Национальным центром биотехнологической информации (NCBI) при Национальных институтах здоровья (NIH), и Ensembl/Gencode, которая поддерживается Европейской молекулярно-биологической лабораторией (EMBL). Однако, несмотря на большой прогресс, сейчас в каталогах различается количество белок-колирующих генов, генов длинных некодирующих РНК, псевдогенов, а также варьирует количество антисмысловых РНК и других некодирующих РНК (табл. 2). Каталоги еще дорабатываются: например, в прошлом году сотни генов, кодирующих белок, были добавлены или удалены из списка Gencode. Эти разногласия объясняют проблему создания полного каталога человеческих генов.

В 2017 году была создана новая база данных генов человека — CHESS. Примечательно, что она включает все белок-кодирующие гены как Gencode, так и RefSeq, так что пользователям CHESS не нужно решать, какую базу данных они предпочитают. Бóльшее количество генов может вызывать больше ошибок, но создатели считают, что бóльший набор окажется полезным при исследовании болезней человека, которые еще не отнесены к генетическим. Набор генов CHESS в настоящее время в версии 2.0 еще не окончательный, и, безусловно, создатели работают над его усовершенствованием.

Таким образом, все еще неизвестно, сколько всего генов у человека. Существует ряд проблем, затрудняющих эту задачу. Например, многие гены (особенно, гены днкРНК), видимо, имеют высокую тканеспецифичность. Из этого следует, что пока ученые подробно не исследуют все типы клеток человека, они не могут быть уверены, что обнаружили все человеческие гены и транскрипты. Безусловно, сегодня знания о человеческих генах стали значительно обширнее, чем в начале проекта «Геном человека», а технологии совершеннее. Это дает надежду на то, что в скором времени мы узнаем точный ответ на поставленный вопрос.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий