Осадочные горные породы

Минералы вторичные

Так называются минералы, образовавшиеся при метасоматизме, при выветривании других минералов и горных пород, то есть при процессах, преобразующих уже сформировавшиеся породы. Эскаля (финляндский петрограф) называл эти минералы постериорными (по-латыни — последующими).

К ним в изверженных породах относятся минералы: эпидот, цоизит, змеевик, мусковит, турмалин, тальк, кальцит… Другими словами, все гидрокислые и карбонатные соединения, которые не могут выделиться из огненно-жидкой магмы. Но многие минералы, вообще образующиеся непосредственно при застывании магмы, могут присутствовать в той или иной породе и как вторичный минерал (например, кварц, рудные минералы и другие).

Разграничение вторичных от первичных образований имеет существенное значение в петрографии. Первичные составные части освещают условия генезиса горной породы, а вторичные минералы дают возможность проследить ход тех или иных изменений и превращений, которые претерпела горная порода. Наконец, минералы подразделяют по практическому значению, что приведено далее.

Происхождение минералов

Генезис это процесс минералообразования. Такие процессы подразделяют на три группы, в зависимости от источника энергии.

1. Магматогенные (гипогенные) процессы

Формирование происходит путем застывания и кристаллизации магмы. Данный раствор-расплав, состоящий преимущественно из силикатов (соединений кремния) и содержащий все химические элементы, либо преодолевает сопротивление вышележащих пород и изливается на поверхность, либо остается в недрах и остывает и кристаллизуется там. В соответствии с этим продукты классифицируют на эффузивные и интрузивные соответственно.

Так как любая магма имеет преимущественно кремнистый состав, там происходит формирование силикатов (кремнистых минералов). Многие из них — породообразующие минералы, которые формируют граниты, сиениты, диориты и прочие кристаллические породы. В значительной степени они представлены полевыми шпатами, гранитами, слюдами, роговыми обманками, оливином и др. В процессе их образования происходит переход Si, Al, Ca, Fe, Mg, Ti, K, Na, H2, O2 из магмы в остаточный расплав.

При внедрении в земную кору температура магмы составляет около 1200°С. К концу кристаллизации она снижается до 500 — 600°С, и при данной температуре в трещины пород внедряется остаточный расплав, формируя пегматитовые жилы.

Часть летучих веществ попадает по трещинам в закристаллизовавшиеся породы. Они воздействуют на слагающие минералы и преобразуют их. Так в гранитах формируются грейзены, вольфрамовые, молибденовые, оловянные и редкометалльные руды.

При дальнейшем снижении температуры выделяются гидротермальные растворы. Из них формируются месторождения золота, цинка, меди, серебра, урана, свинца, сурьмы, ртути, олова, мышьяка.

2. Метаморфические процессы (эндогенные)

Подразумевают изменения минералов в недрах под воздействием давления и температуры. Эти явления происходят в связи со сменой геологической обстановки и изначального залегания пород.

Выделяют региональный и контактовый метаморфизм. Процессы первого типа затрагивают значительные площади и происходят на значительных глубинах. При этом формируются сланцы, гнейсы. Контактовый метаморфизм состоит в воздействии магмы (особенно гранитной) при внедрении в толщи мергеля и известняков. В результате они переходят в мраморы и скарны. С ними иногда связаны месторождения железа, вольфрама, молибдена, олова, кобальта.

3. Экзогенные процессы

Данные явления обусловлены связанными с энергией Солнца внешними факторами. Они происходят при обычном давлении и невысокой температуре у земной поверхности. Состоят в том, что обнажившиеся и залегающие на малых глубинах породы и минералы подвергаются выветриванию (разрушению) под механическим и химическим воздействием воды, солнца, ветра, организмов и др. Часть разрушенных пород и минералов уносится, часть остается на месте, формируя россыпи золота, платины, циркона, алмаза, гранатов, олова, магнетита, производных вольфрама и др. Многие породообразующие минералы разрушаются и растворяются. Их соли разносятся водами, а в засушливых районах они осаждаются, образуя месторождения гипса, натриевой и калиевой солей, мирабилита.

То есть экзогенное минералообразование происходит в результате взаимного действия факторов атмосферы, биосферы, гидросферы на минералы на поверхности Земли. Новые минералы, сформировавшиеся таким путем из исходных, называют гипергенными.

К тому же существует биохимический подтип экзогенного минералообразования. Он состоит в преобразовании остатков организмов и их жизнедеятельности. В результате образуются горючие ископаемые, мел, известняки, самородная сера, некоторые бурые железняки, фосфориты. Очень распространены полевые шпаты, плагиоклазы, роговые обманки и т. д.

История науки

Минералогия является древнейшей среди геологических наук. Она появилась намного раньше, чем геология сформировалась в качестве самостоятельного научного направления. Первые минералогические наблюдения относятся к античным временам. Впервые они встречаются в трудах Аристотеля, где он выделил группу металлоидов как подобных металлам образований и классифицировал минералы на руды и камни. Теофраст описал в практическом аспекте 16 минеральных видов, разделив их на камни, металлы и земли. Позже Плиний Старший собрал в четырех трактатах все доступные в то время данные о минералах.

Далее минералогия развивалась благодаря горному делу.

В средневековье развитие геологических наук наиболее интенсивно происходило в арабских странах. Одним из выдающихся ученых в данной сфере является Бируни. Он создал описания драгоценных камней, впервые используя физические параметры такие как относительная твердость и удельный вес. В те же времена Ибн-Сина классифицировал известные минералы на растворимые (соли), земли и камни, горючие (сернистые) ископаемые, плавкие (металлы). В данный период в Европе алхимик Альберт Великий объединил данные о минералах.

К концу средневековья минералогические знания были весьма скудными. Под многими минералами понимали руды. Ввиду отсутствия химии не было данных о их химической природе.

В XVI в. В. Бирингуччио и Г. Агриколлой были составлены сводки минеральных знаний. Последний усовершенствовал классификацию Ибн-Сины. Также он подробно описал диагностические признаки и затронул генезис рудных месторождений.

В XVII в. датские, голландские и английские ученые положили начало геометрической кристаллографии и кристаллооптике.

К XVIII в. основную роль в сфере минералогии играла Швеция благодаря горнодобывающей промышленности. Поэтому здесь сформировалась группа минералогов, среди которых были К. Линней и А. Кронштедт. Первый пытался использовать для минералов двойную номенклатуру, а второй исключил из объекта изучения организмы и исследовал химический состав.

В то время под минералогией все еще понимали научную дисциплину с намного более обширным предметом изучения, чем сейчас. Так, в 1636 г. данный термин был введен в литературу Бернардом Цезиусом в качестве науки о всех естественных ископаемых телах. То есть существовало единое геолого-минералогическое направление естествознания.

Оно было разделено в 1780 г. А.Г. Вегенером на геогнозию (общая и динамическая геология), ориктогнозию (минералогия и петрография), горное искусство (горное дело). Благодаря этому, минералогия обрела более конкретный объект изучения (горные породы и окаменелости отделили от минералов). К тому же появились новые классификация, описательные методы изучения, номенклатура, курс обучения.

В 1783 г.Ж.Б. Роме де Лиля измерил межгранные углы кристаллов некоторых минералов, Р.Ж. Аюи в 1801 г. создал модель их строения. Это вместе с работами У. Воластона способствовало развитию кристаллографии.

Первым российским минералогом считают В.М. Севергина. Продолжив идеи М.В. Ломоносова, он подразделил ископаемые тела на простые (минералы) и сложные (горные породы и фоссилии).

В XIX в. зародились химическое и кристаллографическое направления минералогии. Появились многие фундаментальные понятия.

В XX в., благодаря учению о правиле фаз, особо интенсивно развивались физико-химическое и экспериментальное направления. Кроме того, начался синтез различных разделов минералогии.

Со второй половины XX в.начали развиваться такие направления как органическая, био- и наноминералогия.

О геологии в энциклопедии Википедия

В  Википедии представлен несколько другой обзор разделов геологии (довольно бессвязный и местами спорный):

Геология — это целая отрасль науки. Она объединяет большое количество наук.
Но геология, не смотря на корень гео в названии, не ограничивается изучением Земли.
Например, Солнечная Система изучается такими разделами геологии,
как космохимия, космология ,
космическая геология и планетология
(последние 2 раздела сейчас имеются в экзопланетах).

Планету Земля можно разделить на оболочки .
Внешняя, газовая оболочка Земли — атмосфера.
Жидкая оболочка планеты (гидросфера) состоит из океана, системы рек и озер и подземных вод.
Населённая жизнью оболочка Земли — биосфера.

Большая часть Земли находится в твёрдом состоянии, и именно твёрдая Земля
является предметом изучения комплекса геологических наук
.

Однако все оболочки интенсивно взаимодействуют друг с другом и их нельзя рассматривать по отдельности
.

Но и Землю целиком нельзя рассматривать как замкнутую систему .
Земля получает из окружающего космоса значительные количества вещества и энергии.
Изучение воздействия космоса на Землю — пограничное поле
между геологией, астрономией
и космологией.

Химический состав Земли, процессы, концентрирующие и распыляющие химические элементы в различных сферах Земли,
являются предметом геохимии.

Физические свойства планеты Земля и изучением её физическими методами занимается геофизика.

Земля в основном состоит из минералов.
Изучением минералов, вопросами их генезиса, классификации и определения занимается
минералогия.
Минералы образуют горные породы.
Описанием и классификацией горных пород занимается петрография,
а изучением их происхождения — наука петрология

.

Многолетнемёрзлые горные породы приобретают ряд характерных свойств и особенностей,
изучением которых занимается геокриология.

Земля — «живая», активно меняющаяся планета. В ней происходят движения различающиеся по масштабу на многие порядки.
Процессами самого крупного, планетарного масштаба занимается геодинамика.
Она изучает связь процессов в ядре, мантии и земной коре
.

Движения земной коры в меньшем масштабе, на уровне блоков земной коры изучает тектоника.
Структурная геология занимается изучением, описанием и моделированием
важнейших нарушений земной коры — разломов и складок.
Микроструктурная геология изучает деформацию пород на микроуровне — в масштабе зёрен минералов и агрегатов.

Все геологические науки в той или иной степени имеют исторический характер,
рассматривают существующие образования в историческом аспекте
и занимаются, в первую очередь, выяснением истории формирования современных структур.
Данные о последовательности важнейших событий в истории Земли обобщает историческая геология.

История Земли делится на два крупнейших этапа — эона, по появлению организмов с твёрдыми частями,
оставляющих следы в осадочных породах и позволяющих по данным палеонтологии определить относительный геологический возраст.
С появлением ископаемых на Земле начался фанерозой — время открытой жизни,
а до этого был криптозой или докембрий — время скрытой жизни.

Геология докембрия выделяется в особую дисциплину, так как занимается изучением специфических,
часто сильно и многократно метаморфизованных комплексов и имеет особые методы исследования.

Палеонтология
изучает древние формы жизни и занимается описанием ископаемых остатков,
а также следов жизнедеятельности животных .

Стратиграфия — наука об определении относительного геологического возраста осадочных горных пород,
расчленении толщ пород и корреляции различных геологических образований.
Одними из основных источников данных для стратиграфии являются палеонтологические определения.

Геология полезных ископаемых изучает типы месторождений полезных ископаемых, методы их разведки и поиска.
Отдельной наукой является геология горючих полезных ископаемых
нефти, горючего газа, угля (смотрите страницу о нефтегазовой промышленности).

Свойства

Свойства делят на химические, физические, оптические, магнитные.

Химические свойства определяются элементами, входящими в состав: химической формулой минерала. Так же именно эти свойстваопределяют растворимость минералов и кислотах.

Физические свойства определяются химическим составом и их кристаллической структурой. Некоторые из них проявляются в зависимости от кристаллографического направления. На основе этого параметра их подразделяют на скалярные и векторные (первые зависят, вторые — нет). К скалярным свойствам относится плотность, к векторным — твердость, и кристаллографические особенности.

Также физические свойства классифицируют на механические, оптические, магнитные, люминесцентные, термические, электрические, радиоактивность.

Многие параметры используют для определения минералов в полевых условиях (диагностические свойства). Помимо основных внешних характеристик, таких как форма и цвет, для этого применяют твердость, отдельность, спайность, хрупкость, блеск, излом. Некоторые минералы диагностируют по гибкости, ковкости и упругости.

По механическим свойствам можно встретить:

  • хрупкие (основная часть);
  • ковкие;
  • негибкие (среди листоватых и чешуйчатых);
  • ломкие и гибкие (волокнистые минералы).

Хрупкость — прочность минеральных зерен, проявляющаяся при механическом раскалывании.

Среди физических свойств очень важным показателем минералов является твердость. На ее основе создана 10-значная шкала Мооса. В ней каждому значению соответствует минерал (от талька до алмаза). При этом нужно учитывать, что для некоторых минеральных видов данный параметр отличается для разных сторон (например, для кианита 5,5 и 7). Это объясняется неодинаковой плотностью кристаллической решетки.

Спайность это способность раскалываться по кристаллографическим направлениям.

Побежалость — наличие тонкой цветной или разноцветной пленки на выветрелой поверхности. Является результатом окисления.

Излом это это важнное диагностическое свойство. Благодаря ему характеризуется поверхность обломков, образующихся при ударе, образуя особенности поверхности на неспайном свежем сколе.

Плотность это масса единицы объема вещества. Также ее называют удельным весом. По своей плотности минералы могу быть:

  • лёгкими — до 2500 кг на кубометр;
  • средними — от 2500 до 4000 кг на кубометр;
  • тяжёлыми – от 4000 до 8000 кг на кубометр;
  • очень тяжёлыми от 8000 кг на кубометр и более.

Плотность минерала напрямую зависит от его состава, типа структуры, количества микровключений и их характера, а также от таких явлений, как метамиктность и гидратация.

Удельная плотность это отношение плотности минерала к плотности воды. Применяется для определения единичной массы и служит диагностическим признаком для некоторых классов. Так, наибольшим значением данного параметра обладают самородные металлы и интерметаллиды (так, для золота она составляет 19,3 г/см3), среди распространенных минералов — оксиды и сульфиды, благодаря наличию в составе элементов с высокой атомной массой.

Оптические свойства

Цвет. У одних минералов он определен, у других весьма изменчив. Последнее может объясняться наличием множества модификаций или полихроизмом. В первом случае, благодаря включению примесей в химический состав, минерал получает другой цвет. Во втором кристаллы меняют окраску в зависимости от направления попадания света.

  • Белый камень
  • Камни черного цвета
  • Красные цвета и драгоценные камни
  • Оранжевый камень
  • Желтый камень
  • Зеленый камень
  • Голубой камень
  • Синий камень
  • Фиолетовый камень
  • Сиреневый камень
  • Розовый камень
  • Коричневый камень
  • Прозрачные камни

Цвет черты. Проявляется при царапанье. То же, что цвет минерала в порошке. Блеск — световой эффект, создаваемый отражением части светового потока. Определяется отражательной способностью.

Преломление, поляризация, дисперсия характеризуют оптические константы.

Магнитные свойства определяются содержанием двухвалентного железа.

Классификации минералов

Все природные образования, составляющие предмет минералогии, также как и все искусственные вещества в химии,
необходимо делить прежде всего на две большие самостоятельные группы:

  1. неорганические минералы, к которым, кроме редко встречающихся самородных элементов,
    относятся природные соединения (за исключением органических) всех элементов;
  2. органические минералы, представленные разнообразнейшими соединениями углерода
    (исключение составляют лишь карбонаты и карбиды, относимые к неорганическим соединениям
    ).

Более подробной общепринятой классификации минералов нет.
Но есть рвзные способы их группировки, например, по образованию или назначению (приведены на сайте).
Тем не менее, объективно, такая классификация должна основываться, прежде всего, на химическом составе минералов
с учетом их кристаллической решетки и связанными с этим свойствами.

Кристаллохимические классификации минералов

Хотя химический состав служил основой классификации минералов с середины 19 в.,
минералоги не всегда придерживались единого мнения о том, каким должен быть порядок расположения в ней минералов.

Согласно одному из методов построения классификации, минералы группировали по одинаковому главному металлу или катиону.
При этом минералы железа попадали в одну группу, минералы свинца – в другую, минералы цинка – в третью и т.д.

Однако по мере развития науки выяснилось, что минералы, содержащие один и тот же неметалл (анион или анионную группу),
имеют сходные свойства и похожи между собой гораздо больше, чем минералы с общим металлом.
К тому же минералы с общим анионом встречаются в одинаковой геологической обстановке и имеют близкое происхождение.

В результате в современной систематике минералы объединяются в классы по признаку общего аниона или анионной группы.
Единственное исключение составляют самородные элементы,
которые встречаются в природе сами по себе, не образуя соединений с другими элементами.

Таким образом, в основе современной классификации минералов лежат химические и структурные признаки.
Все известные минералы группируются в несколько классов, главнейшими из которых являются:

  1. самородные элементы и интерметаллические соединения,
  2. сульфиды и их аналоги,
  3. галогениды,
  4. оксиды и гидроксиды,
  5. соли кислородных кислот (карбонаты, сульфаты, фосфаты, силикаты, вольфраматы).

В  пределах классов минералов выделяют подклассы, а внутри последних — группы.

Классификация Бетехтина

А. Г. Бетехтин в своём «Курсе минералогии» также считает, что rлассификация минералов должна быть кристаллохимической
и основываться на данных изучения взаимосвязи всех свойств природных химических соединений
с их химическим составом и кристаллической структурой.

Для неорганических минералов Бетехтин предлагает такую классификацию:

  • Раздел I. Самородные элементы и интерметаллические соединения.
  • Раздел II. Карбиды, нитриды и фосфиды.
  • Раздел III. Сульфиды, сульфосоли и им подобные соединения.
    • Класс 1. Простые и двойные сернистые и им подобные соединения (селениды, теллуриды, арсениды и др.).
    • Класс 2. Сульфосоли.
  • Раздел IV. Галоидные соединения (галогениды) и галогеносоли.
    • Класс 1. Фториды и алюмофториды.
    • Класс 2. Хлориды, бромиды и иодиды.
  • Раздел V. Окислы (оксиды).
    • Класс 1. Простые и сложные окислы.
    • Класс 2. Гидроокислы (гидроксиды).
  • Раздел VI. Кислородные соли.
    • Класс 1. Иодаты.
    • Класс 2. Нитраты.
    • Класс 3. Карбонаты.
    • Класс 4. Сульфаты и селенаты.
    • Класс 5. Хроматы.
    • Класс 6. Молибдаты и вольфраматы.
    • Класс 7. Фосфаты, арсенаты и ванадаты.
    • Класс 8. Арсениты, селениты и теллуриты.
    • Класс 9. Бораты.
    • Класс 10. Силикаты и алюмосиликаты (бериллосиликаты, боросиликаты).
      • А. Силикаты с изолированными тетраэдрами аниона SiO4.
      • Б. Силикаты с изолированными группами тетраэдров SiO4.
      • В. Силикаты с непрерывными цепочками и лентами тетраэдров SiO4.
      • Г. Силикаты с непрерывными слоями тетраэдров SiO4.
      • Д. Силикаты с непрерывными трехмерными каркасами тетраэдров SiO4 и АlО4.

Из них наиболее широко распространены минералы, принадлежащие к классам
а) самородных элементов, б) сульфидов, в) галоидных соединений, г) оксидов и гидроксидов,
д) карбонатов, е) сульфатов, ж) фосфатов и з) силикатов.
[Здесь нет только вольфраматы — они, видимо, самые редкие.]

Что касается органических минералов, то к ним относятся встречающиеся в природе твёрдые тела,
возникшие благодаря жизни и деятельности живых организмов. Поэтому их не всегда относят к минералам.

Представлена группа такими минералами, как янтарь,
гагат, жемчуг, вевеллит.

Как камни образуются в природе?

Обычному человеку, далекому от науки, сложно ответить на вопрос, как образуются камни, растут ли они. Глядя на большие и маленькие каменистые обломки, трудно представить, что когда-то валуны могли появиться и от живых существ. По способу возникновения наука делит их на несколько видов.

Живые камни трованты в Румынии растут и размножаются. Удивительные камни, которые постепенно увеличиваются в размерах.

Магматическое происхождение

Магматическое происхождение – первичное. Образование из магмы произошло вследствие извержения вулканов. На свойства, строение оказали влияние состав, скорость остывания лавы, другие внешние факторы.

Осадочное происхождение пород

Осадочное происхождение – вторичное. Образования сформированы на дне древних водоемов вследствие скопления осадков, продуктов жизнедеятельности фауны, флоры. Представляют твердые конгломераты.

Метаморфическое образование камней

Измененные породы из магматических и осадочных материалов, созданные вследствие полного или частичного преобразования. Причиной перемен являются перепады давления, температур, раскаленные газы, минерализованные источники, циркулирующие в земной коре.

Камни из космоса – метеориты

Спровоцированы гравитационными силами. Во время прохождения Земли сквозь метеоритные потоки ежегодно до 2-х тонн космических «пришельцев» обрушиваются на нее. В 2013 году один из астероидов, войдя в земную атмосферу и стал метеоритом. Разрушившись, он упал в озеро Чебаркуль, за что и получил название.

Экзогенные природные образования

Внешние твердые тела, появившиеся на поверхности земной коры и в ее верхней части. Имеют 2 вида происхождения: осадочное (песок, гравий), органическое (известняки, торф, уголь).

Независимо от формы и места образования каждый вид представляет особую ценность.

Физические свойства горных пород, сфера их применения

Физические свойства горных пород — внутренние особенности, которыми характеризуется конкретная горная порода, объясняющие ее отличие или общность с другими горными породами и проявляющиеся в виде ответной реакции на воздействие внешних физических полей или сред.

Численным выражением физического свойства горной породы являются размерные или безразмерные параметры в форме коэффициента, показателя, характеристики, то есть количественная мера этого свойства.

Различают скалярные и тензорные физические параметры материалов. Из-за многообразия минерального состава, структур, многофазности, генезиса горные породы обладают широким диапазоном значений физических свойств. На протяжении многолетнего периода изучения удалось определить стандартные методы измерений физических свойств горных пород с указанием состава и строения материала.

В физике горных пород принята классификация, в которой выделяются основные группы физических свойств, зависящие от типа внешнего физического поля:

  • плотностные;
  • механические;
  • тепловые;
  • электрические;
  • магнитные;
  • волновые;
  • радиационные;
  • гидрогазодинамические.

С помощью основных независимых физических параметров сопоставляют, совместно рассматривают и анализируют разные горные породы. К данным характеристикам относятся:

  • объемная масса;
  • пористость;
  • прочность на сжатие;
  • прочность на растяжение;
  • модуль продольной упругости;
  • коэффициент относительных поперечных деформаций;
  • коэффициент теплопроводности;
  • удельная теплоемкость;
  • коэффициент линейного теплового расширения;
  • удельное электрическое сопротивление;
  • относительная диэлектрическая проницаемость;
  • относительная магнитная проницаемость.

Паспорт горных пород по физическим свойствам представляет собой унифицированную цифровую запись базовых физических параметров определенной горной породы. Основные параметры обязательны к определению и являются общим фундаментом в науке, которая изучает все горные породы.

Изменение одного физического параметра конкретного материала каким-либо способом, влечет увеличение или уменьшение величины остальных характеристик. Взаимосвязь между физическими свойствами горных пород позволяет на основании имеющихся данных определить остальные параметры.

Горные породы для современного человечества обладают в первую очередь прикладным, утилитарным значением. Но также высоко ценятся и декоративные качества многих природных ископаемых. В хозяйственном комплексе натуральные материалы применяются в различных направлениях деятельности человека.

Большое значение горные породы имеют для промышленности и других сфер:

  • Из габбро извлекают железо, титан, ванадий, никель, медь, серу, а пироксениты служат источником железа и платины.
  • Гранит, мрамор, базальт применяется в качестве декоративной отделки, кирпич и бетон служат популярным строительным материалом.
  • Из щебня, бетона, битума оснащают дороги, трассы и тротуары.
  • В качестве источника энергии используется уголь, торф, радиоактивное сырье.
  • Из песка и песчаника производят стекло, силикатный кирпич, бетон, дорожные покрытия.
  • Доломит является одним из компонентов при производстве резины, фарфора, фаянса.
  • Из известняка изготавливают соляную, уксусную кислоту, ацетилен, каустическую соду, карбид кальция, цемент.
Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий