Взгляни на атомы, прикоснись к молекуле

Электрические характеристики

То, как вещество ведет себя в электрическом поле, определяется электрическими характеристиками молекул: поляризуемостью и постоянным дипольным моментом.

Дипольный момент – это электрическая асимметрия молекулы. У молекул, которые имеют центр симметрии, как H2, нет постоянного дипольного момента. Способность электронной оболочки молекулы перемещаться под воздействием электрического поля, в результате которого в ней образуется наведенный дипольный момент, – это поляризуемость. Чтобы найти значение поляризуемости и дипольного момента, необходимо измерить диэлектрическую проницаемость.

Поведение в переменном электрическом поле световой волны характеризуют оптические свойства вещества, которые определяются поляризуемостью молекулы этой субстанции. Непосредственно с поляризуемостью связаны: рассеяние, преломление, оптическая активность и другие явления молекулярной оптики.

Часто можно услышать вопрос: «От чего, кроме молекул, зависят свойства вещества?» Ответ на него достаточно прост.

Свойства веществ, кроме изометрии и кристаллической структуры, определяются температурой окружающей среды, самой субстанции, давлением, наличием примесей.

sp3-Гибридизация

В sp3-гибридизацию вступают одна s-орбиталь и три p-орбитали. При этом образуются четыре sp3-гибридные орбитали:

Изображение с портала orgchem.ru

Четыре sp3-гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому четыре гибридные орбитали углерода в состоянии sp3-гибридизации направлены в пространстве под углом 109о 28’  друг к другу, что соответствует тетраэдрическому строению.

Например, в молекуле метана CH4 атомы водорода располагаются в пространстве в вершинах тетраэдра, центром которого является атом углерода. Валентный угол Н–С–Н в метане равен 109о 28’

Молекулам линейных алканов с большим числом атомов углерода соответствует зигзагообразное расположение атомов углерода.

Например, пространственное строение н-бутана

Химия молекул

До формирования такой науки, как квантовая механика, природа химических связей в молекулах была нераскрытой тайной. Классическая физика объяснить направленность и насыщаемость валентных связей не могла. После создания базовых теоретических сведений о химической связи (1927 г.) на примере простейшей молекулы Н2, теория и методы расчёта стали постепенно совершенствоваться. К примеру, на основе широкого применения метода молекулярных орбиталей, квантовой химии, стало возможным вычислять межатомные расстояния, энергию молекул и химических связей, распределение электронной плотности и других данных, которые вполне совпадали с экспериментальными.

Вещества с одинаковым составом, но разным химическим строением и разными свойствами, называются структурными изомерами. У них разные структурные формулы, но одинаковые молекулярные.

Известны различные типы структурной изомерии. Различия заключаются в строении углеродного скелета, положении функциональной группы или положении кратной связи. Кроме того, еще существуют пространственные изомеры, у которых свойства молекулы вещества характеризуются одинаковым составом и химическим строением. Поэтому и структурные, и молекулярные формулы у них одинаковые. Отличия заключаются в пространственной форме молекулы. Для изображения разных пространственных изомеров используют специальные формулы.

Есть соединения, которые называются гомологами. Они похожи по строению и свойствам, но отличаются по составу на одну или несколько групп СН2. Все вещества, похожие по строению и свойствам, объединены в гомологические ряды. Изучив свойства одного гомолога, можно рассуждать о любом другом из них. Совокупность гомологов – это гомологический ряд.

При преобразованиях структур вещества химические свойства молекул резко меняются. Примером служат даже простейшие соединения: метан, соединяясь даже с одним атомом кислорода, становится ядовитой жидкостью с названием метанол (метиловый спирт – СН3ОН). Соответственно, его химическая комплементарность и действие на живые организмы становятся другими. Аналогичные, но более сложные изменения, происходят при модификации структур биомолекул.

Химические молекулярные свойства сильно зависят от строения и свойств молекул: от энергетических связей в ней и геометрии самой молекулы. Особенно это работает в биологически активных соединениях. Какая конкурирующая реакция окажется преобладающей, часто определяется только пространственными факторами, зависящими, в свою очередь, от исходных молекул (их конфигурации). Одна молекула, имеющая «неудобную» конфигурацию, вообще не вступит в реакцию, а другая, с таким же химическим составом, но другой геометрией, может среагировать на реакцию мгновенно.

Большое число биологических процессов, наблюдающихся при росте и размножении, связано с геометрическими соотношениями между продуктами реакции и исходными веществами. К сведению: действие немалого количества новых лекарств основывается на аналогичном строении молекул какого-либо соединения, вредного с биологической точки зрения для человеческого организма. Лекарство занимает место вредоносной молекулы и затрудняет ее действие.

С помощью химических формул выражают состав и свойства молекул разных веществ. На основании молекулярной массы, химического анализа устанавливается атомное соотношение и составляется эмпирическая формула.

Самый легкий из атомов – атом водорода

В периодической таблице химических элементов водород стоит на первом месте. Его ядро состоит лишь из одного протона, вокруг которого вращается единственный электрон. Простейшее строение определяет минимальную массу, которую может иметь атом – 1,008 а.е.м. или 1,7х10-24 г.

На Земле водород существует в виде соединений с другими веществами или образует двухатомную молекулу Н2. Если считать в массовом отношении, на его долю приходится 1% земной коры. Если перевести массу в количество атомов, то содержание водорода окажется более внушительным – 17%. Этот показатель ставит элемент на второе место после кислорода (52%).

Во Вселенной водород составляет 88,6% от общей доли атомов, находящихся в космосе в виде звездного вещества и космической пыли.

Буквы из ксеноновых пикселей

Рассмотреть атомы не всегда было так просто. История атомно-силового микроскопа началась в 1979 году, когда Герд Карл Бинниг и Генрих Рорер, работавшие в Исследовательском центре компании IBM в Цюрихе, приступили к созданию прибора, который позволил бы изучать поверхности с атомным разрешением. Чтобы придумать такое устройство, исследователи решили использовать эффект туннельного перехода — способность электронов преодолевать, казалось бы, непроходимые барьеры. Идея состояла в том, чтобы, измеряя силу туннельного тока, возникающего между сканирующим зондом и изучаемой поверхностью, определять положение атомов в образце.

У Биннига и Рорера получилось, и они вошли в историю как изобретатели сканирующего туннельного микроскопа (СТМ), а в 1986 году получили Нобелевскую премию по физике. Сканирующий туннельный микроскоп совершил настоящую революцию в физике и химии.

В 1990 году Дон Айглер и Эрхард Швайцер, работавшие в исследовательском центре IBM в Калифорнии, показали, что СТМ можно применять не только для наблюдения за атомами, но для манипулирования ими. С помощью зонда сканирующего туннельного микроскопа они создали, возможно, самый популярный образ, символизирующий переход химиков к работе с отдельными атомами — нарисовали на никелевой поверхности три буквы 35 атомами ксенона (рис. 1).

Бинниг не стал почивать на лаврах — в год получения Нобелевской премии совместно с Кристофером Гербером и Кельвином Куэйтом, также работавшими в Цюрихском исследовательском центре IBM он начал работу над еще одним устройством для изучения микромира, лишенного недостатков, которые присущи СТМ. Дело в том, что с помощью сканирующего туннельного микроскопа нельзя было изучать диэлектрические поверхности, а только проводники и полупроводники, да и для анализа последних между ними и зондом микроскопа нужно было создать значительное разрежение. Поняв, что создать новое устройство проще, чем модернизировать существующее, Бинниг, Гербер и Куэйт изобрели атомно-силовой микроскоп, или АСМ. Принцип его работы кардинально иной: для получения информации о поверхности измеряют не силу тока, возникающую между зондом микроскопа и изучаемым образцом, а значение возникающих между ними сил притяжения, то есть слабых нехимических взаимодействий — сил Ван-дер-Ваальса.

Первая рабочая модель АСМ была устроена сравнительно просто. Исследователи перемещали над поверхностью образца алмазный зонд, связанный с гибким микромеханическим датчиком — кантилевером из золотой фольги (между зондом и атомом возникает притяжение, кантилевер гнется в зависимости от силы притяжения и деформирует пьезоэлектрик). Степень изгиба кантилевера определялась с помощью пьезоэлектрических датчиков — сходным образом канавки и гребни виниловой пластинки превращаются в аудиозапись. Конструкция атомно-силового микроскопа позволяла ему детектировать силы притяжения до 10–18 ньютон. Через год после создания рабочего прототипа исследователям удалось получить изображение рельефа поверхности графита с разрешением в 2,5 ангстрема.

За три десятка лет, прошедших с тех пор, АСМ использовали для изучения практически любых химических объектов — от поверхности керамического материала до живых клеток и отдельных молекул, причем находящихся как в статическом, так и динамическом состоянии. Атомно-силовая микроскопия стала рабочей лошадкой химиков и материаловедов, а количество работ, в которых применяется этот метод, постоянно растет (рис. 2).

За эти годы исследователи подобрали условия и для контактного, и для бесконтактного изучения объектов с помощью атомно-силовой микроскопии. Контактный метод описан выше, он основан на вандерваальсовом взаимодействии между кантилевером и поверхностью. При работе в бесконтактном режиме пьезовибратор возбуждает колебания зонда на некоторой частоте (чаще всего резонансной). Сила, действующая со стороны поверхности, приводит к тому, что и амплитуда, и фаза колебаний зонда изменяются. Несмотря на некоторые недостатки бесконтактного метода (в первую очередь чувствительность к внешним шумам), именно он исключает воздействие зонда на исследуемый объект, а значит, интереснее для химиков.

6. Спектры и строение молекул

Электрические, оптические, магнитные и другие свойства молекул связана с волновыми функциями и энергиями различных состояний молекул. Информацию о состояния молекул и вероятности перехода между ними дают молекулярные спектры.

Частоты колебаний в спектрах определяются массами атомов, их расположением и динамикой межатомных взаимодействий. Частоты в спектрах зависят от моментов инерции молекул, определения которых со спектроскопических данных позволяет получить наиболее точные значения межатомных расстояний в молекуле. Общее число линий и полос в колебательном спектре молекулы зависит от ее симметрии.

Электронные переходы в молекулах характеризуют структуру их электронных оболочек и состояние химических связей. Спектры молекул, которые имеют большее количество соединенных связей, характеризуются длинноволновыми полосами поглощения, попадающие в видимую область. Вещества, которые построены из таких молекул, характеризуются пестротой; к таким веществам относятся все органические красители.

Примеры веществ молекулярного строения

К молекулярным веществам относятся:

  • Большинство простых веществ-неметаллов: кислород (O2), сера (S2), фосфор (P4), водород (H2), азот (N2), хлор (Cl2), фтор (F2), бром (Br2), йод (I2);
  • Соединения веществ-неметаллов друг с другом: аммиак (NH3), углекислый газ (CO2), серная кислота (HSO4), оксид азота (N2O5);
  • Сахар;
  • Нафталин.

Молекулярная кристаллическая решетка образована молекулами, которые соединены между собой слабыми силами межмолекулярного притяжения. Поэтому эти вещества летучи (их можно обнаружить по запаху), имеют низкие температуры плавления, малую твердость (хрупкие) и являются диэлектриками (практически не проводят электрический ток).

Чаще всего молекулярные вещества при нормальных условиях находятся в жидком или газообразном агрегатном состоянии. Некоторые молекулярные вещества могут быть в твердом виде, но их отличительными свойствами являются: легкоплавкость и растворимость в воде (если в узлах полярные молекулы). Примерами таких веществ могут служить: сахар, глюкоза, нафталин, CO2 (“сухой лед”).

Рис. 3. Молекулярные кристаллические решетки, например: кислород, сера йод, вода:.

Атомов в составе молекулы может быть от 2 штук до бесконечности. Одно из первых мест по количеству атомов занимает молекула ДНК (дезоксирибонуклеиновая — кислота). В одной молекуле ДНК содержится атомов:

  • углерода — 5750;
  • водорода — 7227;
  • кислорода — 4131;
  • азота — 2215;
  • фосфора — 590.

Что мы узнали?

Итак, мы узнали, что к веществам с молекулярным строением относятся газообразные, жидкие и твердые вещества, молекулярная кристаллическая решетка которых образована молекулами, соединенными между собой слабыми силами межмолекулярного притяжения. Такие вещества летучи (обнаруживаются по запаху), имеют низкие температуры плавления, малую твердость (хрупкие) и являются диэлектриками (практически не проводят электрический ток).

Тест по теме

  1. Вопрос 1 из 5

Начать тест(новая вкладка)

9. Производные сроки

Молекулярный ( рус. молекулярный , англ. molecular , нем. molekular ) — То, что касается молекулы;

Примеры:

  • молекулярная физика — раздел физики, в котором изучаются структура, силы межмолекулярного взаимодействия, характер теплового движения частиц (атомов, молекул, ионов), механические и тепловые свойства веществ в различных агрегатных состояниях;
  • молекулярные спектры — спектры излучения и поглощения, а также комбинационного рассеяния, возникающих вследствие переходов между энергетическими состояниями молекул;
  • молекулярные сита — пористые адсорбенты, в которых размеры пор или вход в поры близки к размерам молекул;
  • молекулярные силы — силы взаимодействия между молекулами
  • молекулярный генератор — см. лазер, мазер;
  • молекулярные кристаллы — кристаллы, состоящие из молекул, которые связаны между собой межмолекулярными силами (например, нафталин).
  • Молекулярный мотор — биологические молекулярные машины, которые используются для движения молекулярных объектов в живых организмах. Вообще говоря, мотор (двигатель) определяется как устройство, которое потребляет энергию в любой форме и преобразует ее в движение или механическую работу.

Виды изомерии

Различают два основных вида изомерии: структурную и пространственную (стереоизомерию).

   Структурные изомеры отличаются друг от друга взаимным расположением атомов в молекуле;  стереоизомеры — расположением атомов в пространстве.

Структурная изомерия

Структурные изомеры – соединения с одинаковым составом, но различным порядком связывания атомов, т.е. с различным химическим строением. Молекулярная формула у структурных изомеров одинаковая, а структурная различается.

1. Изомерия углеродного скелета: вещества различаются строением углеродной цепи, которая может быть линейная или разветвленная.

Например, молекулярной формуле С5Н12 соответствуют три изомера:

2. Изомерия положения обусловлена различным положением кратной связи, функциональной группы или заместителя при одинаковом углеродном скелете молекул.

2.1. Изомерия положения функциональной группы. Например, существует два изомерных предельных спирта с общей формулой С3Н8О: пропанол-1 (н-пропиловый спирт) пропанол-2 (изопропиловый спирт):

2.2. Изомерия положения кратной связи может быть вызвана различным положением кратной (двойной или тройной)  связи в непредельных соединениях. Например, в бутене-1 и бутене-2:

2.3. Межклассовая изомерия – ещё один вид структурной изомерии, когда вещества из разных классов веществ имеют одинаковую общую формулу.

Например, формуле С2Н6О соответствуют: спирт (этанол) и простой эфир (диметиловый эфир):

Пространственная изомерия

Пространственные изомеры – это вещества с одинаковым составом и химическим строением, но с разным пространственным расположением атомов в молекуле. Виды пространственной изомерии – геометрическая (цис—транс) и оптическая изомерия.

1. Геометрическая изомерия (или цис-транс-изомерия)

Геометрическая изомерия характерна для соединений, в которых различается положение заместителей относительно плоскости двойной связи или цикла.

Например, для алкенов и циклоалканов.

Двойная связь не имеет свободного вращения вокруг своей оси.

Поэтому заместители у атомов углерода при двойной связи могут быть расположены либо по одну сторону от плоскости двойной связи (цис-изомер), либо по разные стороны от плоскости двойной связи (транс-изомер). При этом никаким вращением нельзя получить из цис-изомера транс-изомер, и наоборот.

Например, бутен-2 существует в виде цис— и транс-изомеров

1,2-Диметилпропан также образует цис-транс-изомеры:

Геометрические изомеры различаются по физическим свойствам (температура кипения и плавления, растворимость, дипольный момент и др.). Например, температура кипения цис-бутена-2 составляет 3,73 оС, а транс-бутена-2 0,88оС.

Например, в молекуле бутена-1 CH2=CH-CH2-CH3 заместители у первого атома углерода при двойной связи (два атома водорода) одинаковые, и цис—транс-изомеры бутен-1 не образует. А вот в молекуле бутена-2 CH3—CH=CH-CH3 заместители у каждого атома углерода при двойной связи разные (атом водорода и метильная группа CH3), поэтому бутен-2 образует цис— и транс-изомеры.

Таким образом, для соединений вида СH2=СHR и СR2=СHR’ цис—транс-изомерия не характерна.

2. Оптическая изомерия

Оптические изомеры – это пространственные изомеры, молекулы которых соотносятся между собой как предмет и несовместимое с ним зеркальное изображение.

Оптическая изомерия свойственна молекулам веществ, имеющих асимметрический атом углерода.

Асимметрический атом углерода — это атом углерода, связанный с четырьмя различными заместителями.

Такие молекулы обладают оптической активностью — способностью к вращению плоскости поляризации света при прохождении поляризованного луча через раствор вещества.

Например, оптические изомеры образует 3-метилгексан:

Классификация органических соединений

Классификацию органических веществ определяют строение углеродной цепи (углеродного скелета) и наличие и особенности строения функциональных групп.

Углеродный скелет – это последовательность соединенных между собой атомов углерода в органической молекуле.
Функциональная группа – это атом или группа атомов, которая определяет принадлежность молекулы к определенному классу органических веществ и химические свойства, соответствующие данному классу веществ.

Классификация органических веществ по составу

Углеводороды Кислородсодержащие вещества Азотсодержащие вещества
Состоят из атомов углерода и водорода Содержат также атомы кислорода Содержат также атомы азота

Из чего состоит молекула?

Как здание состоит из кирпичиков, а любой механизм, сделанный человеком – из деталей, так и молекула состоит из простых «кирпичиков» – атомов химических элементов. Некоторые молекулы состоят всего из одного атома – например, молекулы металлов. Но подавляющее большинство веществ, которые нас окружают, имеют гораздо более сложное молекулярное строение.

Строение любой молекулы можно записать в виде химической формулы, которая указывает, из атомов каких химических элементов состоит вещество и сколько атомов каждого вещества содержится в одной молекуле. Молекула кислорода состоит из двух одинаковых атомов элемента кислорода.

Всем известна формула воды: H2O, которая означает, что каждая молекула воды содержит один атом кислорода и два атома водорода. Еще одна известная буквально всем формула – С2Н5ОН, формула этилового спирта, которая показывает, что это вещество состоит из двух атомов углерода (С), шести атомов водорода (Н) и одного атома кислорода (О).

В процессе взаимодействия друг с другом вещества обмениваются химическими элементами, вступая в реакции. При этом образуются новые вещества, обладающие новыми свойствами, отличными от свойств исходных веществ.

Так, уголь (практически полностью состоящий из углерода), сгорая (взаимодействуя с кислородом, содержащимся в воздухе), образует углекислый газ – вещество, непригодное для дыхания, в отличие от кислорода. Молекулы в обычном состоянии не несут электрического заряда и называются нейтральными. Те молекулы, которые получают положительный или отрицательный заряд, называются ионами, а процесс – ионизацией. Молекулы, атомы которых имеют неспаренные электроны, называются радикалами.

Можно ли создать человеческими руками белковую молекулу

Да, можно. Первым искусственно получили крохотный по меркам органической химии белок инсулин, отвечающий за стабильность уровня сахара в крови. Однако ресурсы для этого затратили немалые:

  • 10 лет ушло на расшифровку состава инсулина;
  • 227 химических реакций потребовалось для сборки белка;
  • 0,001 % – такое количество инсулина от запланированного количества получили в итоге.

А живая клетка поджелудочной железы тратит на синтез необходимого объема инсулина 10 секунд. Поэтому гораздо выгоднее оказалось генетически модифицировать кишечную палочку, чтобы бактерия взяла на себя труд по созданию медицинского белка.

Атом и его строение

Над тем, как устроено вещество, люди размышляли с глубокой древности. Античные греческие ученые предполагали, что вещества состоят из мельчайших, невидимых глазу частиц разной формы, которые соединяются друг с другом при помощи различных крючков и присосок. Слово «атом» в переводе с греческого означает «неделимый». Так ли это? Действительно ли атом неделим? Существование атома было доказано лишь в XIX веке путем эксперимента. Установлено, что атом содержит еще более мелкие по размеру частицы. Атом состоит из ядра и электронов, находящихся в околоядерном пространстве. В ядре сосредоточена практически вся масса атома. Вклад электронов в массу атома крайне мал. Масса электрона составляет 9,1 · 10−31 кг.

Каждый электрон заряжен отрицательно, условно его заряд принимают равным –1. Символ, которым принято обозначать электрон – ē. Электроны движутся вокруг ядра, перемещаясь по сложным траекториям. Ядро атома состоит из двух типов частиц: протонов и нейтронов. Протоны обозначают буквой р, а нейтроны – n.

В целом атом электронейтрален, то есть его заряд равен нулю. С учетом электронейтральности атома, количество электронов в атоме всегда совпадает с количеством протонов. С учетом того, что в ядре только протоны заряжены (нейтроны заряда не имеют), и заряд каждого протона +1, ядро имеет заряд. Заряд ядра определяется количеством протонов, и всегда имеет знак + Заряд ядра обозначают символом Z (протонное число) Как определить количество электронов и протонов в атоме? На приведена схема строения атома водорода. Видно, что атом водорода состоит из одного отрицательно заряженного электрона и положительно заряженного ядра, состоящего из одного протона.

Количество электронов и протонов в атоме химического элемента совпадает с его порядковым номером Рассмотрим другой пример. Определим количество электронов, протонов и заряд ядра для атома кислорода. Порядковый номер кислорода – 8.

Значит, в его атоме содержится 8 электронов, 8 протонов, заряд ядра +8. Как определить количество нейтронов?

В начале параграфа уже упоминалось, что практически вся масса атома сосредоточена в его ядре. В свою очередь ядро состоит из протонов и нейтронов. Относительная атомная масса элемента, записанная в Периодической Системе, приблизительно равна сумма масс протонов и нейтронов, поскольку масса электронов очень мала. Сумму масс протонов и нейтронов, равную округленной атомной массе химического элемента, называют массовым (нуклонным) числом и обозначают А. Определим количество нейтронов в атоме кислорода.

Относительная атомная масса кислорода с учетом округления равна 16. Вычтем количество протонов: 16 – 8 = 8. В атоме кислорода 8 нейтронов.

С учетом вышесказанного можем записать несколько простых выражений:

  • количество электронов равно количеству протонов ē = p;
  • заряд ядра равен количеству протонов и имеет знак +, Z = p

Атом – мельчайшая частица вещества, состоящая из ядра и электронов, движущихся в околоядерном пространстве Протоны и нейтроны имеют общее название – нуклоны (от лат. nucleus – «ядро»).

Термином нуклид обозначают атом с определённым порядковым номером Z и массовым числом А, т.е. с определённым набором протонов и нейтронов. Нуклиды с одним и тем же атомным номером, но с разными массовыми числами называются изотопными нуклидами или просто изотопами (от греч. «изос» – «равный» и «топос» – «место»).

Другими словами, в ядрах всех изотопов данного элемента содержится одинаковое число протонов, но разное число нейтронов. Нуклиды обозначают символом элемента и массовым

  • числом: 12С, 14N, 16O
  • другая форма записи: углерод-12, азот-14, кислород-16

Если массовое число не указывать, то подразумеваются все природные изотопы данного элемента. Иногда указывают и атомный номер элемента, но это не обязательно, поскольку символ элемента однозначно связан с определённым Z.

Так, для атомов водорода Z = 1, для азота Z = 7, для кислорода Z = 8 и т.д. Разных нуклидов значительно больше, чем элементов. Например, в природе найдены три изотопа водорода – нуклиды 1Н, 2Н (другое обозначение D – дейтерий) и 3Н (или Т – тритий), три изотопа углерода (12С, 13С и 14С), четыре – серы, пять – кальция, шесть – селена, семь – молибдена, восемь – кадмия, девять – ксенона и десять – олова (это рекорд).

Есть и элементы одиночки, представленные всего одним нуклидом: 9Ве, 19F, 23Na, 27Al, 31P и др. Некоторые природные нуклиды нестабильны: со временем они распадаются; это – радионуклиды.

Как размер молекулы влияет на силы притяжения?

Ответственной за притяжение между молекулами является электромагнитная сила, которая проявляется через притяжение противоположных и отталкивание подобных зарядов. Электростатическая сила, которая существует между противоположными зарядами, доминирует во взаимодействиях между атомами и между молекулами. Гравитационная сила настолько мала в этом случае, что ею можно пренебречь.

При этом размер молекулы влияет на силу притяжения через электронное облако случайных искажений, возникающих при распределении электронов молекулы. В случае неполярных частиц, проявляющих только слабые ван-дер-ваальсовые взаимодействия или дисперсионные силы, размер молекул оказывает прямое влияние на величину электронного облака, окружающего указанную молекулу. Чем она больше, тем больше и заряженное поле, которое ее окружает.

Большее электронное облако означает, что между соседними молекулами может происходить больше электронных взаимодействий. В результате одна часть молекулы развивает временный положительный частичный заряд, а другая — отрицательный. Когда это происходит, молекула может поляризовать электронное облако у соседней. Притяжение происходит потому, что частичная положительная сторона одной молекулы притягивается к частичной отрицательной стороне другой.

5. Магнитные свойства молекул

Молекулы и макромолекулы подавляющего большинства химических соединений является диамагнитными. Магнитная восприимчивость молекул (χ) для отдельных органических соединений может быть выражена как сумма значений χ для отдельных связей.

Молекулы, которые имеют постоянный магнитный момент, является парамагнитными. К ним относятся молекулы с непарным количеством электронов на внешней оболочке (например, NO и любые свободные радикалы), молекулы, содержащие атомы с незапертой (незаполненными) внутренними оболочками (переходные металлы и т.д.). Магнитная восприимчивость парамагнитных веществ зависит от температуры, поскольку тепловое движение препятствует ориентации магнитных моментов в магнитном поле.

Молекулы интересные факты детям. Что такое молекула?

Молекула (новолат. molecula, уменьшительное от лат. moles — масса) — электрически нейтральная частица, образованная из двух или более связанных ковалентными связями атомов, наименьшая частица химического вещества. В физике к молекулам причисляют также одноатомные молекулы, то есть свободные (химически не связанные) атомы (например, инертных газов, ртути и т. п.).

Атомно-молекулярное учение

Причисление к молекулам одноатомных молекул, то есть свободных атомов, например одноатомных газов, приводит к совмещению понятий «молекула» и «атом». Совмещение понятий «молекула» и «атом» идёт вразрез с атомно-молекулярным учением, по которому молекула образуется из атомов. В химии принято считать, что из одного атома молекула образоваться не может. Обычно подразумевается, что молекулы нейтральны (не несут электрических зарядов) и не несут неспаренных электронов (все валентности насыщены); заряженные молекулы называют ионами, молекулы с мультиплетностью, отличной от единицы (то есть с неспаренными электронами и ненасыщенными валентностями) — радикалами.

Квантовая механика

Молекулы относительно высокой молекулярной массы, состоящие из повторяющихся низкомолекулярных фрагментов, называются макромолекулами.

С точки зрения квантовой механики молекула представляет собой систему не из атомов, а из электронов и атомных ядер, взаимодействующих между собой.

Строение молекулы в различных агрегатных состояниях

Вода может быть в нескольких состояниях:

  1. Жидком. Это ее преимущественное состояние в нормальных условиях. Жидкая вода образует многочисленные реки, ручьи, озёра, Мировой океан.
  2. Твердом – это лед, а его кристаллы часто образуют иней или снег.
  3. Газообразном — водяной пар.

Существуют также и переходные состояния жидкости, которые возникают при замерзании или испарении.

Строение молекулы воды, водородная связь способствует расположению молекул воды. Рассмотрим особенности каждого агрегатного состояния по отдельности.

Лед

Представляет собой твердое состояние воды.

Молекулы воды образуют слои, причём каждая молекула связана с тремя молекулами в своём слое и с одной молекулой соседнего слоя. Расстояние между атомами кислорода ближайших молекул равно 0,276 нм.

Атом кислорода связан с четырьмя атомами водорода: с двумя, расположенными на расстоянии 0,096 — 0,102 нм посредством валентных связей, и с двумя другими, находящимися на расстоянии 0,174 — 0,180 нм посредством водородных связей.

Жидкая вода

В отличие от структуры льда структура жидкой воды исследована ещё недостаточно.

Предполагается, что жидкая вода по своему строению представляет нечто среднее между кристаллами льда и паром.

В результате изучения молекулы воды с помощью инфракрасных и рентгеновых лучей было видно, что при температуре близкой к точке замерзания, молекулы жидкой воды собираются в небольшие группы, практически так, как в кристаллах.

При температуре близкой к точке кипения они располагаются более свободно.

Водяной пар

Это газообразное агрегатное состояние воды.

При данном состоянии молекула воды не имеет структуры и состоит преимущественно из мономерных молекул воды, которые находятся на расстояние относительно друг друга.

Взаимодействие атомов при образовании молекулы

Природа химических связей в молекуле оставалась загадкой до создания квантовой механики — классическая физика не могла объяснить насыщаемость и направленность валентных связей. Основы теории химической связи были заложены в 1927 году Гайтлером и Лондоном на примере простейшей молекулы Н2. Позже теория и методы расчётов были значительно усовершенствованы.

Химические связи в молекулах подавляющего большинства органических соединений является ковалентными. Среди неорганических соединений существуют ионные и донорно-акцепторные связи, которые реализуются в результате обобществления пары электронов атома. Энергия образования молекулы из атомов во многих рядах подобных соединений приближённо аддитивна. То есть можно считать, что энергия молекулы — это сумма энергий её связей, имеющих постоянные значения в таких рядах.

Аддитивность энергии молекулы выполняется не всегда. Примером нарушения аддитивности являются плоские молекулы органических соединений с так называемыми сопряжёнными связями, то есть с кратными связями, которые чередуются с единичными. Сильная делокализация p-состояний электронов приводит к стабилизации молекулы. Выравнивание электронной плотности вследствие коллективизации p-состояний электронов по связям выражается в укорочении двойных связей и удлинении одинарных. В правильном шестиугольнике межуглеродных связей бензола все связи одинаковы и имеют длину, среднюю между длиной одинарной и двойной связи. Сопряжение связей ярко проявляется в молекулярных спектрах. Современная квантовомеханическая теория химических связей учитывает делокализации не только p-, но и s-состояний электронов, которая наблюдается в любых молекулах.

В подавляющем большинстве случаев суммарный спин валентных электронов в молекуле равен нулю. Молекулы, содержащие неспаренные электроны — свободные радикалы (например, атомарный водород Н, метил ·CH3), обычно неустойчивы, поскольку при их взаимодействии друг с другом происходит значительное снижение энергии вследствие образования ковалентных связей. Они могут устойчиво существовать при таких температурах, когда средняя кинетическая энергия молекулы превосходит или сравнима с энергией связи, но при этом ниже энергии разрушения (например ионизации) радикала.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий